

Прил	ожен	ие к Решению № _	
OT «_		202	_ г.

СХЕМА ТЕПЛОСНАБЖЕНИЯ

муниципального образования «город Северобайкальск» Республики Бурятия (актуализация на 2022 – 2023 г.г.) Заказчик: Муниципальное казенное учреждение «Комитет по управлению городским хозяйством администрации муниципального образования «город Северобайкальск»

Разработчик: Общество с ограниченной ответственностью «Экспертэнерго»

Директор ООО «Экспертэнерго»

_ И.А. Саранин

Экспертэнерго»)

СОДЕРЖАНИЕ

СОДЕРЖАНИЕ
ВВЕДЕНИЕ11
1. РАЗДЕЛ 1. ПОКАЗАТЕЛИ СУЩЕСТВУЮЩЕГО И ПЕРСПЕКТИВНОГО СПРОСА НА ТЕПЛОВУЮ ЭНЕРГИЮ (МОЩНОСТЬ) И ТЕПЛОНОСИТЕЛЬ В УСТАНОВЛЕННЫХ ГРАНИЦАХ ТЕРРИТОРИИ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ «ГОРОД СЕВЕРОБАЙКАЛЬСК»
1.1. Величины существующей отапливаемой площади строительных фондов и приросты отапливаемой площади строительных фондов по расчетным элементам территориального деления с разделением объектов строительства на многоквартирные дома, индивидуальные жилые дома, общественные здания и производственные здания промышленных предприятий по этапам — на каждый год первого 5-летнего периода и на последующие 5-летние периоды
тепловой нагрузки в каждом расчетном элементе территориального деления, зоне действия каждого источника тепловой энергии, каждой системе теплоснабжения и по поселению, городскому округу, городу федерального значения
2. РАЗДЕЛ 2. СУЩЕСТВУЮЩИЕ И ПЕРСПЕКТИВНЫЕ БАЛАНСЫ ТЕПЛОВОЙ МОЩНОСТИ ИСТОЧНИКОВ ТЕПЛОВОЙ ЭНЕРГИИ И ТЕПЛОВОЙ НАГРУЗКИ ПОТРЕБИТЕЛЕЙ29
2.1. Описание существующих и перспективных зон действия систем теплоснабжения и источников тепловой энергии
2.2. Описание существующих и перспективных зон действия индивидуальных источников тепловой энергии
нагрузки для потребителей каждого поселения, городского округа, города федерального значения

	2.5. Радиус эффективного теплоснабжения, определяемый в соответствии с методическими указаниями по разработке схем теплоснабжения
3.	РАЗДЕЛ 3. СУЩЕСТВУЮЩИЕ И ПЕРСПЕКТИВНЫЕ БАЛАНСЫ ТЕПЛОНОСИТЕЛЯ44
	3.1. Существующие и перспективные балансы производительности водоподготовительных установок и максимального потребления теплоносителя теплопотребляющими установками потребителей
TE	РАЗДЕЛ 4. ОСНОВНЫЕ ПОЛОЖЕНИЯ МАСТЕР-ПЛАНА РАЗВИТИЯ СИСТЕМ ЕПЛОСНАБЖЕНИЯ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ «ГОРОД ЕВЕРОБАЙКАЛЬСК»
	4.1. Описание сценариев развития теплоснабжения муниципального образования «город Северобайкальск»
	4.2. Обоснование выбора приоритетного сценария развития теплоснабжения муниципального образования «город Северобайкальск»
5.	РАЗДЕЛ 5. ПРЕДЛОЖЕНИЯ ПО СТРОИТЕЛЬСТВУ, РЕКОНСТРУКЦИИ,
	ЕХНИЧЕСКОМУ ПЕРЕВООРУЖЕНИЮ И (ИЛИ) МОДЕРНИЗАЦИИ ИСТОЧНИКОВ
T	ЕПЛОВОЙ ЭНЕРГИИ52
	5.1. Предложения по строительству источников тепловой энергии, обеспечивающих перспективную тепловую нагрузку на осваиваемых территориях муниципального района, для которых отсутствует возможность и (или) целесообразность передачи тепловой энергии от существующих или реконструируемых источников тепловой энергии, обоснованная расчетами ценовых (тарифных) последствий для потребителей (в ценовых зонах теплоснабжения — обоснованная расчетами ценовых (тарифных) последствий для потребителей, если реализацию товаров в сфере теплоснабжения с использованием такого источника тепловой энергии планируется осуществлять по регулируемым ценам (тарифам), и (или) обоснованная анализом индикаторов развития системы теплоснабжения поселения, городского округа, города федерального значения, если реализация товаров в сфере теплоснабжения с использованием такого источника тепловой энергии будет осуществляться по ценам, определяемым по соглашению сторон договора поставки тепловой энергии (мощности) и (или) теплоносителя) и радиуса эффективного теплоснабжения
	5.2. Предложения по реконструкции источников тепловой энергии, обеспечивающих перспективную тепловую нагрузку в существующих и расширяемых зонах действия источников тепловой энергии
	источников тепловой энергии с целью повышения эффективности работы систем теплоснабжения
	5.4. Графики совместной работы источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии и котельных53

5.5. меры по выводу из эксплуатации, консервации и демонтажу изоыточных источников тепловой энергии, а также источников тепловой энергии, выработавших нормативный срок службы, в случае если продление срока службы технически невозможно или экономически нецелесообразно
5.6. Меры по переоборудованию котельных в источники тепловой энергии функционирующие в режиме комбинированной выработки электрической и тепловой энергии
5.7. Меры по переводу котельных, размещенных в существующих и расширяемых зонах действия источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии, в пиковый режим работы, либо по выводу их из эксплуатации
5.9. Предложения по перспективной установленной тепловой мощности каждого источника тепловой энергии с предложениями по сроку ввода в эксплуатацию новых мощностей
5.10. Предложения по вводу новых и реконструкции существующих источников тепловой энергии с использованием возобновляемых источников энергии, а также местных видов топлива
РАЗДЕЛ 6. ПРЕДЛОЖЕНИЯ ПО СТРОИТЕЛЬСТВУ, РЕКОНСТРУКЦИИ И (ИЛИ) ОДЕРНИЗАЦИИ ТЕПЛОВЫХ СЕТЕЙ56
6.1. Предложения по строительству, реконструкции и (или) модернизации тепловых сетей, обеспечивающих перераспределение тепловой нагрузки из зон с дефицитом располагаемой тепловой мощности источников тепловой энергии в зоны с резервом располагаемой тепловой мощности источников тепловой энергии (использование существующих резервов)
6.2. Предложения по строительству, реконструкции и (или) модернизации тепловых сетей для обеспечения перспективных приростов тепловой нагрузки в осваиваемых районах поселения, городского округа, города федерального значения под жилищную комплексную или производственную застройку
6.3. Предложения по строительству, реконструкции и (или) модернизации тепловых сетей в целях обеспечения условий, при наличии которых существует возможность поставок тепловой энергии потребителям от различных источников тепловой энергии при сохранении надежности теплоснабжения
6.4. Предложения по строительству, реконструкции и (или) модернизации тепловых сетей для повышения эффективности функционирования системы теплоснабжения, в том числе за счет перевода котельных в пиковый режим работы или ликвидации котельных
6.5. Предложения по строительству, реконструкции и (или) модернизации тепловых сетей для обеспечения нормативной надежности теплоснабжения потребителей58

	РАЗДЕЛ 7. ПРЕДЛОЖЕНИЯ ПО ПЕРЕВОДУ ОТКРЫТЫХ СИСТЕМ ЕПЛОСНАБЖЕНИЯ (ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ) В ЗАКРЫТЫЕ СИСТЕМЫ ОРЯЧЕГО ВОДОСНАБЖЕНИЯ
	7.1. Предложения по переводу существующих открытых систем теплоснабжения (горячего водоснабжения) в закрытые системы горячего водоснабжения, для осуществления которого необходимо строительство индивидуальных и (или) центральных тепловых пунктов при наличии у потребителей внутридомовых систем горячего водоснабжения
	7.2. Предложения по переводу существующих открытых систем теплоснабжения (горячего водоснабжения) в закрытые системы горячего водоснабжения, для осуществления которого отсутствует необходимость строительства индивидуальных и (или) центральных тепловых пунктов по причине отсутствия у потребителей внутридомовых систем горячего водоснабжения
	7.3. Оценка экономической эффективности мероприятий по переводу открытых систем теплоснабжения (горячего водоснабжения) на закрытые системы горячего водоснабжения
8.	РАЗДЕЛ 8. ПЕРСПЕКТИВНЫЕ ТОПЛИВНЫЕ БАЛАНСЫ61
	8.1. Перспективные топливные балансы для каждого источника тепловой энергии по видам основного, резервного и аварийного топлива на каждом этапе
	8.2. Потребляемые источником тепловой энергии виды топлива, включая местные виды топлива, а также используемые возобновляемые источники энергии
	8.3. Виды топлива, их доля и значение низшей теплоты сгорания топлива, используемого для производства тепловой энергии по каждой системе теплоснабжения63
	8.4. Преобладающий в поселении, городском округе вид топлива, определяемый по совокупности всех систем теплоснабжения, находящихся в соответствующем поселении, городском округе
	8.5. Приоритетное направление развития топливного баланса поселения, городского округа
9.	РАЗДЕЛ 9. ИНВЕСТИЦИИ В СТРОИТЕЛЬСТВО, РЕКОНСТРУКЦИЮ, ТЕХНИЧЕСКОЕ
ПЕ	ЕРЕВООРУЖЕНИЕ И (ИЛИ) МОДЕРНИЗАЦИЮ66
	9.1. Предложения по величине необходимых инвестиций в строительство, реконструкцию, техническое перевооружение и (или) модернизацию источников тепловой энергии на каждом этапе
	9.2. Предложения по величине необходимых инвестиций в строительство, реконструкцию, техническое перевооружение и (или) модернизацию тепловых сетей, насосных станций и тепловых пунктов на каждом этапе
	9.3. Предложения по величине инвестиций в строительство, реконструкцию, техническое перевооружение и (или) модернизацию в связи с изменениями температурного графика и гидравлического режима работы системы теплоснабжения на
	каждом этапе

9.4. Предложения по величине необходимых инвестиций для перевода открытой системы теплоснабжения (горячего водоснабжения) в закрытую систему горячего водоснабжения на каждом этапе
9.5. Оценка эффективности инвестиций по отдельным предложениям67
9.6. Величина фактически осуществленных инвестиций в строительство, реконструкцию, техническое перевооружение и (или) модернизацию объектов теплоснабжения за базовый период и базовый период актуализации
10. РАЗДЕЛ 10. РЕШЕНИЕ О ПРИСВОЕНИИ СТАТУСА ЕДИНОЙ ТЕПЛОСНАБЖАЮЩЕЙ ОРГАНИЗАЦИИ (ОРГАНИЗАЦИЯМ)68
10.1. Решение о присвоении статуса единой теплоснабжающей организации (организациям)
10.2. Реестр зон деятельности единой теплоснабжающей организации (организаций)68 10.3. Основания, в том числе критерии, в соответствии с которыми теплоснабжающая организация определена единой теплоснабжающей организацией
10.4. Информация о поданных теплоснабжающими организациями заявках на присвоение статуса единой теплоснабжающей организации72
10.5. Реестр систем теплоснабжения, содержащий перечень теплоснабжающих организаций, действующих в каждой системе теплоснабжения, расположенных в границах муниципального образования «город Северобайкальск»72
11. РАЗДЕЛ 11. РЕШЕНИЯ О РАСПРЕДЕЛЕНИИ ТЕПЛОВОЙ НАГРУЗКИ МЕЖДУ ИСТОЧНИКАМИ ТЕПЛОВОЙ ЭНЕРГИИ74
12. РАЗДЕЛ 12. РЕШЕНИЯ ПО БЕСХОЗЯЙНЫМ ТЕПЛОВЫМ СЕТЯМ75
13. РАЗДЕЛ 13. СИНХРОНИЗАЦИЯ СХЕМЫ ТЕПЛОСНАБЖЕНИЯ СО СХЕМОЙ ГАЗОСНАБЖЕНИЯ И ГАЗИФИКАЦИИ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ «ГОРОД СЕВЕРОБАЙКАЛЬСК», СХЕМОЙ И ПРОГРАММОЙ РАЗВИТИЯ ЭЛЕКТРОЭНЕРГЕТИКИ, А ТАКЖЕ СО СХЕМОЙ ВОДОСНАБЖЕНИЯ И ВОДООТВЕДЕНИЯ77 13.1. Описание решений (на основе утвержденной региональной (межрегиональной)
программы газификации жилищно-коммунального хозяйства, промышленных и иных организаций) о развитии соответствующей системы газоснабжения в части обеспечения топливом источников тепловой энергии
13.2. Описание проблем организации газоснабжения источников тепловой энергии77 13.3. Предложения по корректировке, утвержденной (разработке) региональной (межрегиональной) программы газификации жилищно-коммунального хозяйства,
промышленных и иных организаций для обеспечения согласованности такой программы с указанными в схеме теплоснабжения решениями о развитии источников тепловой энергии и систем теплоснабжения
13.4. Описание решений (вырабатываемых с учетом положений утвержденной схемы и программы развития Единой энергетической системы России) о строительстве, реконструкции, техническом перевооружении, выводе из эксплуатации источников тепловой энергии и генерирующих объектов, включая входящее в их состав

	ловой энергии, в части перспективных балансов тепловой мощности в схемах оснабжения
схеме разви разви участ 13.6. водос Севе	ме комбинированной выработки электрической и тепловой энергии, указанных в теплоснабжения, для их учета при разработке схемы и программы перспективного ития электроэнергетики субъекта Российской Федерации, схемы и программы ития Единой энергетической системы России, содержащие в том числе описанием указанных объектов в перспективных балансах тепловой мощности и энергии. 79 Описание решений (вырабатываемых с учетом положений утвержденной схемы снабжения и водоотведения Муниципального образования «городробайкальск») о развитии соответствующей системы водоснабжения в части
13.7. водос Север тепло	сящейся к системам теплоснабжения
	АЗДЕЛ 14. ИНДИКАТОРЫ РАЗВИТИЯ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ ИПАЛЬНОГО ОБРАЗОВАНИЯ «ГОРОД СЕВЕРОБАЙКАЛЬСК»80
14.1. техно 14.2. техно 14.3. с кол станц 14.4.	Количество прекращений подачи тепловой энергии, теплоносителя в результате ологических нарушений на тепловых сетях
14.5. 14.6. расче	
велич	Доля тепловой энергии, выработанной в комбинированном режиме (как шение величины тепловой энергии, отпущенной из отборов турбоагрегатов, к общей чине выработанной тепловой энергии в границах поселения, городского округа федерального значения)
14.8. 14.9. энерг	Удельный расход условного топлива на отпуск электрической энергии84
14.10	ровой опертии)

	тепловых сетей (для каждой системы теплоснабжения)85
	14.12. Отношение материальной характеристики тепловых сетей, реконструированных за год, к общей материальной характеристике тепловых сетей (фактическое значение за отчетный период и прогноз изменения при реализации проектов, указанных в утвержденной схеме теплоснабжения) (для каждой системы теплоснабжения, а также для поселения, городского округа, города федерального значения)
15	теплоснабжения) (для поселения, городского округа, города федерального значения)87 . РАЗДЕЛ 15. ЦЕНОВЫЕ (ТАРИФНЫЕ) ПОСЛЕДСТВИЯ89
	15.1. Тарифно-балансовые расчетные модели теплоснабжения потребителей по каждой системе теплоснабжения
	15.2. Тарифно-балансовые расчетные модели теплоснабжения потребителей по каждой единой теплоснабжающей организации
	15.3. Результаты оценки ценовых (тарифных) последствий реализации проектов схемы теплоснабжения, на основании разработанных тарифно-балансовых моделей89
TE	. РАЗДЕЛ 16. ОБЕСПЕЧЕНИЕ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ ПЛОСНАБЖЕНИЯ ПОСЕЛЕНИЯ, ГОРОДСКГО ОКРУГА, ГОРОДА ФЕДЕРАЛЬНОГО НАЧЕНИЯ90
	16.1. Описание текущего и перспективного объема (массы) выбросов загрязняющих веществ в атмосферный воздух, сбросов загрязняющих веществ на водосборные площади, в поверхностные и подземные водные объекты, размещения отходов производства, образующихся на стационарных объектах производства тепловой энергии (мощности), в том числе функционирующих в режиме комбинированной выработки электрической и тепловой энергии, размещенных на территории поселения, городского округа, города федерального значения (далее - объекты теплоснабжения)
	вредных (загрязняющих) веществ в приземном слое атмосферного воздуха от выбросов объектов теплоснабжения
	16.3. Описание текущих и перспективных значений максимальных разовых концентраций вредных (загрязняющих) веществ в приземном слое атмосферного воздуха от выбросов объектов теплоснабжения97
	16.4. Оценка снижения объема (массы) выбросов вредных (загрязняющих) веществ в атмосферный воздух и размещения отходов производства за счет перераспределения тепловой нагрузки от котельных на источники с комбинированной выработкой
	электрической и тепловой энергии102

водосборные площади, в поверхностные и подземные водные объекты, и минимизаци воздействий на окружающую среду от размещения отходов производства
водные объекты, минимизации воздействий на окружающую среду от размещени отходов производства10
17. РАЗДЕЛ 17. СВЕДЕНИЯ О МЕРОПРИЯТИЯХ ПО ОБЕСПЕЧЕНИЮ НАДЕЖНОСТ ТЕПЛОСНАБЖЕНИЯ И БЕСПЕРЕБОЙНОЙ РАБОТЫ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ ВЫЯВЛЕНИЕ ПОТЕНЦИАЛЬНЫХ УГРОЗ ДЛЯ ИХ РАБОТЫ, ОЦЕНКА ПОТРЕБНОСТИ ИНВЕСТИЦИЯХ, НЕОБХОДИМЫХ ДЛЯ УСТРАНЕНИЯ ДАННЫХ УГРОЗ10
18. РАЗДЕЛ 18. СЦЕНАРИИ РАЗВИТИЯ АВАРИЙ В СИСТЕМАХ ТЕПЛОСНАБЖЕНИЯ МОДЕЛИРОВАНИЕМ ГИДРАВЛИЧЕСКИХ РЕЖИМОВ РАБОТЫ ТАКИХ СИСТЕМ, В ТО ЧИСЛЕ ПРИ ОТКАЗЕ ЭЛЕМЕНТОВ ТЕПЛОВЫХ СЕТЕЙ И ПРИ АВАРИЙНЫХ РЕЖИМА РАБОТЫ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ, СВЯЗАННЫХ С ПРЕКРАЩЕНИЕМ ПОДАЧ ТЕПЛОВОЙ ЭНЕРГИИ

ВВЕДЕНИЕ

Актуализация схемы теплоснабжения представляет собой решение комплексного развития систем теплоснабжения, от которого во многом зависят масштабы необходимых капитальных вложений в данную инфраструктуру. Прогноз спроса на тепловую энергию основан на прогнозировании развития муниципального образования, в первую очередь его строительной деятельности, определённой генеральным планом.

Рассмотрение комплексного развития систем теплоснабжения начинается на стадии разработки генеральных планов в самом общем виде совместно с другими вопросами инфраструктуры, и такие решения носят предварительный характер. Даётся обоснование необходимости сооружения новых или расширение существующих источников тепла для покрытия имеющегося дефицита мощности и возрастающих тепловых нагрузок на расчётный срок. При этом рассмотрение вопросов выбора основного оборудования для котельных, а также трасс тепловых сетей от них производится только после технико-экономического обоснования принимаемых решений. В качестве основного предпроектного документа по развитию теплового хозяйства муниципального образования принята практика составления перспективной схемы теплоснабжения.

Схема теплоснабжения актуализируется на основе анализа фактических (скорректированных) тепловых нагрузок потребителей с учётом перспективного развития муниципального образования, структуры топливного баланса региона, оценки состояния существующих источников тепла и тепловых сетей и возможности их дальнейшего использования, рассмотрения вопросов надёжности и экономичности.

Обоснование решений (рекомендаций) при актуализации схемы теплоснабжения осуществляется на основе технико-экономического сопоставления вариантов развития систем теплоснабжения в целом и отдельных ее частей (локальных зон теплоснабжения) путем оценки их сравнительной эффективности по критерию минимума суммарных дисконтированных затрат.

С повышением степени централизации, как правило, повышается экономичность выработки тепла, снижаются начальные затраты и расходы по эксплуатации источников теплоснабжения, но одновременно увеличиваются начальные затраты на сооружение тепловых сетей и эксплуатационные расходы на транспорт тепла.

Централизация теплоснабжения всегда экономически выгодна при плотной застройке в пределах определенного района. При централизации теплоснабжения только от котельных не осуществляется комбинированная выработка электрической энергии на базе теплового потребления (т.е. не реализуется принцип теплофикации), поэтому суммарный расход топлива на удовлетворение теплового потребления больше, чем при теплофикации.

Основой для актуализации и реализации схемы теплоснабжения является Федеральный закон от 27 июля 2010 г. № 190-ФЗ «О теплоснабжении» (Статья 23. Организация развития систем теплоснабжения поселений, городских округов), регулирующий всю систему взаимоотношений в теплоснабжении и направленный на обеспечение устойчивого и надёжного снабжения тепловой энергией потребителей.

При проведении актуализации использовались:

- Федеральный закон от 27 июля 2010 г. № 190-ФЗ «О теплоснабжении»;

- Постановление Правительства Российской Федерации от 22 февраля 2012 г. № 154 «О требованиях к схемам теплоснабжения, порядку их разработки и утверждения» (в актуализированной редакции);
- РД-10-ВЭП «Методические основы разработки схем теплоснабжения поселений и промышленных узлов Российской Федерации», введённый с 22.05.2006 года взамен аннулированного Эталона «Схем теплоснабжения городов и промузлов», 1992 г., а также результаты проведенных ранее на объекте энергетических обследований, режимно-наладочных работ, регламентных испытаний, разработки энергетических характеристик, данные отраслевой статистической отчетности;
- СНиП 2.04.14-88 «Тепловая изоляция трубопроводов и оборудования»;
- СП 124.13330.2012 «Тепловые сети»;
- СНиП 2.01.01-82 «Строительная климатология и геофизика»;
- Правила организации теплоснабжения в Российской Федерации (утв. постановлением Правительства РФ от 8 августа 2012 г. № 808);
- Письмо Министерства энергетики РФ от 15 апреля 2020 г. № МЮ-434309 «Об утверждении схем теплоснабжения поселений, городских округов».

Технической базой при актуализации являются:

- генеральный план муниципального образования «город Северобайкальск»;
- материалы по разработке энергетических характеристик систем транспорта тепловой энергии;
- данные технологического и коммерческого учета потребления топлива, отпуска и потребления тепловой энергии, теплоносителя, электроэнергии, измерений (журналов наблюдений, электронных архивов) по приборам контроля режимов отпуска и потребления топлива, тепловой, электрической энергии и воды (расход, давление, температура);
- документы по хозяйственной и финансовой деятельности (действующие нормы и нормативы, тарифы и их составляющие);
- проектная и исполнительная документация по источникам тепла, тепловым сетям (TC);
- эксплуатационная документация (расчетные температурные графики, гидравлические режимы, данные по присоединенным тепловым нагрузкам, их видам и т.п.);
- материалы проведения периодических испытаний TC по определению тепловых потерь и гидравлических характеристик;
- конструктивные данные по видам прокладки и типам применяемых теплоизоляционных конструкций, сроки эксплуатации тепловых сетей;
- статистическая отчетность организации о выработке и отпуске тепловой энергии и использовании ТЭР в натуральном и стоимостном выражении.

1. РАЗДЕЛ 1. ПОКАЗАТЕЛИ СУЩЕСТВУЮЩЕГО И ПЕРСПЕКТИВНОГО СПРОСА НА ТЕПЛОВУЮ ЭНЕРГИЮ (МОЩНОСТЬ) И ТЕПЛОНОСИТЕЛЬ В УСТАНОВЛЕННЫХ ГРАНИЦАХ ТЕРРИТОРИИ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ «ГОРОД СЕВЕРОБАЙКАЛЬСК»

Прогноз перспективного потребления тепловой энергии (мощности) и теплоносителя на цели теплоснабжения потребителей муниципального образования «город Северобайкальск» приведен в Главе 2 «Существующее и перспективное потребление тепловой энергии на цели теплоснабжения» обосновывающих материалов к схеме теплоснабжения муниципального образования «город Северобайкальск».

1.1. Величины существующей отапливаемой площади строительных фондов и приросты отапливаемой площади строительных фондов по расчетным элементам территориального деления с разделением объектов строительства на многоквартирные дома, индивидуальные жилые дома, общественные здания и производственные здания промышленных предприятий по этапам — на каждый год первого 5-летнего периода и на последующие 5-летние периоды

Муниципальное образование «город Северобайкальск» является административнохозяйственной единицей. Муниципальное образование «город Северобайкальск» расположено на северном берегу озера Байкал, в 1048 км от столицы Республики Бурятия - Улан-Удэ. Данное муниципальное образование занимает территорию 110,54 тыс. га, протяжённость границы составляет 45338 м.

В состав территории муниципального образования «город Северобайкальск» входят населенные пункты: город Северобайкальск и поселок Заречный. Промышленные предприятия муниципального образования представлены, в основном, производством пищевой продукции, пиломатериалов, строительными предприятиями, а также производством пенобетона, кузнечным цехом горячей и холодной ковки, производством пластиковых окон, производством тротуарной плитки.

Централизованное теплоснабжение осуществляется от четырёх источников тепловой энергии, работающих на данный момент на угле.

Площадь строительных фондов и приросты площади строительных фондов по расчетным элементам территориального деления муниципального образования «город Северобайкальск» представлены в Табл. 1.1.

Табл. 1.1. Площадь строительных фондов и приросты площади строительных фондов по расчетным элементам территориального деления муниципального образования «город Северобайкальск»

№ п/п	Наименование объекта застройки	Единицы измерения	Этапы					
IN≌ II/II			2022	2023	2024	2025 - 2029	2030 - 2034	
	Центральная котел	ьная (угольная)				водогрейн	о-модульная ая газовая пьная	
1	Застройка многоквартирными жилыми домами	M ²	414363,5	414363,5	414363,5	441135,6	441135,6	
2	Многофункциональная общественно-деловая застройка	M ²	210731,5	210731,5	210731,5	265986,3	265986,3	
3	Промышленная застройка	M ²	107538,9	107538,9	107538,9	122817,0	122817,0	
	Итого:		732633,9	732633,9	732633,9	829938,8	829938,8	
	Котельная №12	(угольная) *				водогрейн	о-модульная ая газовая ъная	
1	Застройка многоквартирными жилыми домами	M ²	13390,1	13390,1	13390,1	0,0	0,0	
2	Многофункциональная общественно-деловая застройка	M ²	22917,9	22917,9	22917,9	0,0	0,0	
3	Промышленная застройка	M ²	14848,1	14848,1	14848,1	0,0	0,0	
	Итого:		51156,1	51156,1	51156,1	0,0	0,0	
	Котельная №6 (угольная)			Новая б		ьная водогрейн мощностью 7 М		
1	Застройка многоквартирными жилыми домами	M ²	10988,0	28784,3	28784,3	28784,3	28784,3	
2	Многофункциональная общественно-деловая застройка	M ²	1922,0	12421,7	12421,7	12421,7	12421,7	
3	Промышленная застройка	M ²	150,0	186,3	186,3	186,3	186,3	
	Итого:		13060,0	41392,3	41392,3	41392,3	41392,3	
	Котельная №10 (угольная) **			Новая б		ьная водогрейн мощностью 7 М		
1	Застройка многоквартирными жилыми домами	M ²	19126,1	0,0	0,0	0,0	0,0	

№ п/п	Наименование объекта застройки	Единицы измерения	Этапы					
			2022	2023	2024	2025 - 2029	2030 - 2034	
2	Многофункциональная общественно-деловая застройка	M ²	7669,7	0,0	0,0	0,0	0,0	
3	Промышленная застройка	M ²	36,3	0,0	0,0	0,0	0,0	
	Итого:			0,0	0,0	0,0	0,0	

Примечание: (*) — переключение тепловых нагрузок котельной №12 на Центральную котельную (строительство магистрального трубопровода от тепловой сети Центральной котельной при консервации котельной №12). Вывод из эксплуатации угольных котельных (Центральной котельной и котельной №12) с переводом котельной №12 в режим ЦТП. Строительство новой блочномодульной водогрейной газовой котельной (сценарий развития №1).

(**) – переключение тепловых нагрузок котельной №10 на котельную №6 (строительство тепловых сетей для объединения котельных). Вывод из эксплуатации угольных котельных №6 и №10 с переводом выведенной из эксплуатации котельной №10 в режим насосной станции. Строительство новой блочно-модульной водогрейной газовой котельной мощностью 7 МВт (сценарий развития №1).

1.2. Существующие и перспективные объемы потребления тепловой энергии (мощности) и теплоносителя с разделением по видам теплопотребления в каждом расчетном элементе территориального деления на каждом этапе

Прогноз прироста тепловых нагрузок на территории муниципального образования «город Северобайкальск» сформирован на основании прогноза перспективной застройки на расчетный период действия утвержденной схемы теплоснабжения. Аналогично прогнозу перспективной застройки, прогноз спроса на тепловую энергию выполнен для каждой единицы территориального деления.

В соответствии с п. 16 Главы 1 Общие положения «Методических рекомендаций по разработке схем теплоснабжения», утвержденных приказом Минэнерго России №667 и Минрегиона России №667 от 29.12.2012 «Об утверждении методических рекомендаций по разработке схем теплоснабжения»: «Для формирования прогноза теплопотребления на расчетный период рекомендуется принимать нормативные значения удельного теплопотребления вновь строящихся и реконструируемых зданий в соответствии со СНиП 23-02-2003 «Тепловая защита зданий» (его актуализации) (далее по тексту - СНиП) и на основании Приказа Министерства регионального развития РФ от 17 мая 2011 года №224 «О требованиях энергетической эффективности зданий, строений и сооружений» (далее по тексту - Требования энергоэффективности зданий, строений и сооружений).

Прогноз прироста тепловых нагрузок на расчетный период схемы теплоснабжения сформирован на основании представленных документов (выданных условий на подключение к системам теплоснабжения), а также следующих рекомендаций и нормативно-правовых актов:

- 1) Приказ Министерства регионального развития Российской Федерации от 17 мая 2011 г. №224 «Об утверждении требований энергетической эффективности зданий, строений и сооружений»;
- 2) ГОСТ Р 54964-2012 «Оценка соответствия. Экологические требования к объектам недвижимости» (Дата введения 01.03.2013 г.);
- 3) СП 50.13330.2012 актуализированная версия СНиП 23-02-2003 «Тепловая защита зданий»:
- 4) СП 131.13330.2012 актуализированная версия СНиП 23-01-99 «Строительная климатология».

Существующие и перспективные объемы потребления тепловой энергии (мощности) и теплоносителя с разделением по видам теплопотребления для жилых и общественно-деловых зданий на каждом этапе представлены в Табл. 1.2.

Табл. 1.2. Существующие и перспективные объемы потребления тепловой энергии (мощности) и теплоносителя с разделением по видам теплопотребления для жилых и общественно-деловых зданий

Nº	Наименование объекта застройки	THE HOPPING	Этапы					
п/п		Тип нагрузки	2022	2023	2024	2025 - 2029	2030 - 2034	
	Централ	ьная котельная (угольная)	котельная (угольная)			Новая блочно-модульная водогрейная газовая котельная		
		отопление, Гкал/ч	13,7453	13,7453	13,7453	16,6997	16,6997	
1	Многоквартирные жилые здания	вентиляция, Гкал/ч	0,0269	0,0269	0,0269	2,3785	2,3785	
		ГВС, Гкал/ч	2,3531	2,3531	2,3531	17,5384	17,5384	
		отопление, Гкал/ч	16,0533	16,0533	16,0533	17,5384	17,5384	
2	Общественно-деловые здания	вентиляция, Гкал/ч	0,4811	0,4811	0,4811	0,3336	0,3336	
		ГВС, Гкал/ч	0,545	0,545	0,545	0,522	0,522	
		отопление, Гкал/ч	29,7986	29,7986	29,7986	34,2381	34,2381	
Итого:		вентиляция, Гкал/ч	0,5080	0,5080	0,5080	0,4783	0,4783	
		ГВС, Гкал/ч	2,8981	2,8981	2,8981	2,9002	2,9002	
	Котел	льная №12 (угольная) *					о-модульная зовая котельная	
1	Многоквартирные жилые здания	отопление, Гкал/ч	0,5733	0,5733	0,5733	0,0	0,0	
2	05	отопление, Гкал/ч	1,0459	1,0459	1,0459	0,0	0,0	
2	Общественно-деловые здания	ГВС, Гкал/ч	0,0324	0,0324	0,0324	0,0	0,0	
	M	отопление, Гкал/ч	1,6193	1,6193	1,6193	0,0	0,0	
Итого:		ГВС, Гкал/ч	0,0324	0,0324	0,0324	0,0	0,0	
	Котельная №6 (у	гольная)		Новая бло		ая водогрейная га цностью 7 МВт	зовая котельная	
1	Многоквартирные жилые здания	отопление, Гкал/ч	0,4689	1,9336	1,9336	1,9336	1,9336	
2	Общественно-деловые здания	отопление, Гкал/ч	0,1153	0,4574	0,4574	0,4574	0,4574	

Nº	Центопология объект остройки	Turi vornivora		Этапы			
п/п	Наименование объекта застройки	Тип нагрузки	2022	2023	2024	2025 - 2029	2030 - 2034
	Итого:	отопление, Гкал/ч	0,5842	2,3909	2,3909	2,3909	2,3909
	Котельная №10 (угол	льная) **	Новая блочно-модульная водогрейная газовая котельн мощностью 7 МВт				вовая котельная
1	Многоквартирные жилые здания	отопление, Гкал/ч	0,9258	0,0	0,0	0,0	0,0
2	Общественно-деловые здания	отопление, Гкал/ч	0,6257	0,0	0,0	0,0	0,0
Итого:		отопление, Гкал/ч	1,5515	0,0	0,0	0,0	0,0

Примечание: (*) — переключение тепловых нагрузок котельной №12 на Центральную котельную (строительство магистрального трубопровода от тепловой сети Центральной котельной при консервации котельной №12). Вывод из эксплуатации угольных котельных (Центральной котельной и котельной №12) с переводом котельной №12 в режим ЦТП. Строительство новой блочномодульной водогрейной газовой котельной (сценарий развития №1).

- (**) переключение тепловых нагрузок котельной №10 на котельную №6 (строительство тепловых сетей для объединения котельных). Вывод из эксплуатации угольных котельных №6 и №10 с переводом выведенной из эксплуатации котельной №10 в режим насосной станции. Строительство новой блочно-модульной водогрейной газовой котельной мощностью 7 МВт (сценарий развития №1).
- (***) тепловая нагрузка (на отопление, вентиляцию и ГВС) предоставлена АО «Теплоэнерго» в 2021 г., на момент актуализации схемы теплоснабжения в 2022 г. тепловая нагрузка АО «Теплоэнерго» не была предоставлена.

1.3. Существующие и перспективные объемы потребления тепловой энергии (мощности) и теплоносителя объектами, расположенными в производственных зонах, на каждом этапе

Теплоснабжение объектов производственного и складского назначения, в зависимости от их расположения, предполагается обеспечивать, как от существующих источников централизованного теплоснабжения, так и от собственных источников тепла.

В виду отсутствия на момент актуализации проектов планировок территорий, рабочих проектов объектов и технических условий на присоединение их к тепловым сетям, тепловая нагрузка по новым площадкам для размещения объектов производственных предприятий подлежит уточнению в ходе последующей актуализации схемы теплоснабжения.

Существующие и перспективные объемы потребления тепловой энергии (мощности) и теплоносителя для производственных зданий приведены в Табл. 1.3.

Подключение к источникам централизованного теплоснабжения тепловой энергии возможно только при наличии технической возможности и определяется в каждом случае отдельно.

Табл. 1.3. Существующие и перспективные объемы потребления тепловой энергии (мощности) производственных зданий

№ п/п	Нашканаранна объекта соотпайни	Tue usenvara			;	Этапы	
Nº 11/11	Наименование объекта застройки Тип нагрузки		2022	2023	2024	2025 - 2029	2030 - 2034
	Централь			Новая блочно-моду газовая к	· · · · · · · · · · · · · · · · · · ·		
		отопление, Гкал/ч	4,2575	4,2575	4,2575	5,1525	5,1525
1	Производственных зданий	вентиляция, Гкал/ч	0,02975	0,02975	0,02975	0,02975	0,02975
		ГВС, Гкал/ч	0,3231	0,3231	0,3231	0,3791	0,3791
		отопление, Гкал/ч	4,2575	4,2575	4,2575	5,1525	5,1525
	Итого:	вентиляция, Гкал/ч	0,02975	0,02975	0,02975	0,02975	0,02975
		ГВС, Гкал/ч	0,3231	0,3231	0,3231	0,3791	0,3791
	Котел	ьная №12 (угольная) *				Новая блочно-моду газовая к	• • •
1	Проморо потролиц и ополий	отопление, Гкал/ч	0,9329	0,9329	0,9329	0,0	0,0
1	Производственных зданий	ГВС, Гкал/ч	0,0189	0,0189	0,0189	0,0	0,0
	Итого:	отопление, Гкал/ч	0,9329	0,9329	0,9329	0,0	0,0
	VITOTO:	ГВС, Гкал/ч	0,0189	0,0189	0,0189	0,0	0,0
	Котельная №6 (уго	ольная)		Новая	,	пьная водогрейная газо мощностью 7 МВт	овая котельная
1	Производственных зданий	отопление, Гкал/ч	0,0113	0,0190	0,0190	0,0169	0,0169
Итого: отопление, Гкал/ч			0,0113	0,0190	0,0190	0,0169	0,0169
	Котельная №10 (уго	льная) **		Новая		пьная водогрейная газо мощностью 7 МВт	овая котельная
1	Производственных зданий	отопление, Гкал/ч	0,0027	0,0	0,0	0,0	0,0
	Итого: отопление, Гкал/ч				0,0	0,0	0,0

- Примечание: (*) переключение тепловых нагрузок котельной №12 на Центральную котельную (строительство магистрального трубопровода от тепловой сети Центральной котельной при консервации котельной №12). Вывод из эксплуатации угольных котельных (Центральной котельной и котельной №12) с переводом котельной №12 в режим ЦТП. Строительство новой блочномодульной водогрейной газовой котельной (сценарий развития №1).
- (**) переключение тепловых нагрузок котельной №10 на котельную №6 (строительство тепловых сетей для объединения котельных). Вывод из эксплуатации угольных котельных №6 и №10 с переводом выведенной из эксплуатации котельной №10 в режим насосной станции. Строительство новой блочно-модульной водогрейной газовой котельной мощностью 7 МВт (сценарий развития №1).
- (***) тепловая нагрузка (на отопление, вентиляцию и ГВС) предоставлена АО «Теплоэнерго» в 2021 г., на момент актуализации схемы теплоснабжения в 2022 г. тепловая нагрузка АО «Теплоэнерго» не была предоставлена.

1.4. Существующие и перспективные величины средневзвешенной плотности тепловой нагрузки в каждом расчетном элементе территориального деления, зоне действия каждого источника тепловой энергии, каждой системе теплоснабжения и по поселению, городскому округу, городу федерального значения

В соответствии с утвержденными изменениями от 16 марта 2019 г. №276 к Постановлению Правительства Российской Федерации от 22 февраля 2012 г. №154 выполнены и представлены в таблицах ниже результаты расчетов существующей и перспективной величины средневзвешенной плотности тепловой нагрузки для муниципального образования «город Северобайкальск»:

- величина средневзвешенной плотности тепловой нагрузки для каждого расчетного элемента территориального деления определена как частное от деления расчетной тепловой нагрузки потребителей, присоединенных к тепловым сетям системы теплоснабжения, на площадь расчетного элемента представлена в Табл. 1.4;
- величина средневзвешенной плотности тепловой нагрузки в зоне действия каждого источника тепловой энергии должна определяться как частное от деления расчетной тепловой нагрузки потребителей, присоединенных к тепловым сетям системы теплоснабжения, на площадь зоны действия системы теплоснабжения представлена в Табл. 1.5;
- величина средневзвешенной плотности тепловой нагрузки по системе теплоснабжения определена как частное от деления расчетной тепловой нагрузки потребителей, присоединенных к тепловым сетям системы теплоснабжения, на отапливаемую площадь всех подключенных потребителей теплоснабжения централизованно каждой системе представлена в Табл. 1.6;
- величина средневзвешенной плотности тепловой нагрузки по муниципальному образованию определяется как частное от деления расчетной тепловой нагрузки потребителей, присоединенных к тепловым сетям всех систем теплоснабжения, действующих в поселении, на площадь застроенной территории представлена в Табл. 1.7.

Табл. 1.4. Существующие и перспективные величины средневзвешенной плотности тепловой нагрузки в каждом расчетном элементе территориального деления

Наимонованию колостворого удортого		Средневзвеше	нная плотность теплово	ой нагрузки, Гкал/(ч*га)				
Наименование кадастрового квартала	2022	2023	2024	2025 - 2029	2030 - 2034			
03:23:010321	0,005295	0,005295	0,005295	0,005295	0,005295			
03:23:010322	0,004141	0,004141	0,004141	0,003458	0,003458			
03:23:010314	0,001448	0,001448	0,001448	0,001448	0,001448			
03:23:010333	0,006298	0,006298	0,006298	0,005889	0,005889			
03:23:010541	0,010747	0,010747	0,010747	0,010747	0,010747			
03:23:010519	0,019329	0,019329	0,019329	0,019329	0,019329			
03:23:010564	0,272219	0,272219	0,272219	0,274668	0,274668			
03:23:010580	0,067690	0,067690	0,067690	0,067203	0,067203			
03:23:010521	0,006457	0,006457	0,006457	0,006457	0,006457			
03:23:010522	0,009487	0,009487	0,009487	0,008971	0,008971			
03:23:010538	0,054425	0,054425	0,054425	0,053904	0,053904			
03:23:010528	0,001615	0,001615	0,001615	0,001615	0,001615			
03:23:010611	0,001110	0,001110	0,001110	-	-			
03:23:010605	0,001503	0,001503	0,001503	0,001503	0,001503			
03:23:010606	0,047828	0,047828	0,047828	0,047828	0,047828			
03:23:010324	0,003769	0,003769	0,003769	0,003769	0,003769			
03:23:010317	0,038806	0,038806	0,038806	0,038589	0,038589			
03:23:010332	0,001497	0,001497	0,001497	0,001497	0,001497			
03:23:010520	0,007378	0,007378	0,007378	0,007169	0,007169			
03:23:010546	0,046084	0,046084	0,046084	0,046084	0,046084			
03:23:010554	0,035908	0,035908	0,035908	0,035908	0,035908			
03:23:010532	0,011318	0,011318	0,011318	0,005575	0,005575			
03:23:010578	0,005294	0,005294	0,005294	0,005294	0,005294			

		Средневзвеше	нная плотность теплово	ой нагрузки, Гкал/(ч*га)	
Наименование кадастрового квартала	2022	2023	2024	2025 - 2029	2030 - 2034
03:23:010561	0,103411	0,103411	0,103411	0,103411	0,103411
03:23:010571	0,012093	0,012093	0,012093	0,012093	0,012093
03:23:010613	0,016923	0,016923	0,016923	0,016763	0,016763
03:23:010615	0,025663	0,025663	0,025663	0,025158	0,025158
03:23:010315	0,010282	0,010282	0,010282	0,010063	0,010063
03:23:010318	0,005267	0,005267	0,005267	0,005267	0,005267
03:23:010325	0,004146	0,004146	0,004146	0,004146	0,004146
03:23:010576	0,019195	0,019195	0,019195	0,019195	0,019195
03:23:010570	0,012032	0,012032	0,012032	0,012032	0,012032
03:23:010535	0,025791	0,025791	0,025791	0,025791	0,025791
03:23:010526	0,007108	0,007108	0,007108	0,007108	0,007108
03:23:010537	0,022517	0,022517	0,022517	0,022517	0,022517
03:23:010563	0,168384	0,168384	0,168384	0,168384	0,168384
03:23:010557	0,206149	0,206149	0,206149	0,203228	0,203228
03:23:010610	0,008394	0,008394	0,008394	0,008394	0,008394
03:23:010319	0,004164	0,004164	0,004164	0,003828	0,003828
03:23:010507	0,002132	0,002132	0,002132	0,002132	0,002132
03:23:010515	0,011517	0,011517	0,011517	0,011517	0,011517
03:23:010542	0,008744	0,008744	0,008744	0,008744	0,008744
03:23:010560	0,065343	0,065343	0,065343	0,062505	0,062505
03:23:010569	0,010424	0,010424	0,010424	0,010424	0,010424
03:23:010575	0,076514	0,076514	0,076514	0,076514	0,076514
03:23:010536	0,030921	0,030921	0,030921	0,030921	0,030921
03:23:010568	0,066717	0,066717	0,066717	0,066717	0,066717
03:23:010323	0,013516	0,013516	0,013516	0,013516	0,013516
03:23:010313	0,006588	0,006588	0,006588	0,006588	0,006588

	Средневзвешенная плотность тепловой нагрузки, Гкал/(ч*га)						
Наименование кадастрового квартала	2022	2023	2024	2025 - 2029	2030 - 2034		
03:23:010316	0,005699	0,005699	0,005699	0,005354	0,005354		
03:23:010543	0,012640	0,012640	0,012640	0,012640	0,012640		
03:23:010559	0,059638	0,059638	0,059638	0,047670	0,047670		
03:23:010614	0,004714	0,004714	0,004714	0,003566	0,003566		
03:23:010607	0,133886	0,133886	0,133886	0,133886	0,133886		
03:23:010305	0,000081	0,000081	0,000081	0,000081	0,000081		
03:23:010320	0,016810	0,016810	0,016810	0,014756	0,014756		
03:23:010540	0,006487	0,006487	0,006487	0,006487	0,006487		
03:23:010551	0,014311	0,014311	0,014311	0,014311	0,014311		
03:23:010603	0,028632	0,028632	0,028632	0,028632	0,028632		
03:23:010524	0,013537	0,013537	0,013537	0,010090	0,010090		
03:23:010533	0,016313	0,016313	0,016313	0,013125	0,013125		
03:23:010566	0,077169	0,077169	0,077169	0,093665	0,093665		
03:23:010525	0,023128	0,023128	0,023128	0,023128	0,023128		
03:23:010555	0,002422	0,002422	0,002422	0,002422	0,002422		
03:23:010523	0,014255	0,014255	0,014255	0,014255	0,014255		
03:23:010612	0,014087	0,014087	0,014087	0,014087	0,014087		
03:23:010558	0,207465	0,207465	0,207465	0,210707	0,210707		
03:23:010609	0,010889	0,010889	0,010889	0,008086	0,008086		
03:23:010518	0,020280	0,020280	0,020280	0,020280	0,020280		
03:23:010527	0,011465	0,011465	0,011465	0,011465	0,011465		
03:23:010567	0,182159	0,182159	0,182159	0,182159	0,182159		
03:23:010531	0,040052	0,040052	0,040052	0,040052	0,040052		
03:23:010548	0,091092	0,091092	0,091092	0,091092	0,091092		
03:23:010552	0,009598	0,009598	0,009598	-	-		
03:23:010553	0,050977	0,050977	0,050977	0,048928	0,048928		

		Средневзвеше	нная плотность теплов	ой нагрузки, Гкал/(ч*га)	
Наименование кадастрового квартала	2022	2023	2024	2025 - 2029	2030 - 2034
03:23:010547	0,014886	0,014886	0,014886	0,010852	0,010852
03:23:010539	0,041718	0,041718	0,041718	0,041718	0,041718
03:23:010573	0,000199	0,000199	0,000199	0,000199	0,000199
03:23:010565	0,051742	0,051742	0,051742	0,043437	0,043437
03:23:010544	0,006949	0,006949	0,006949	0,009086	0,009086
03:23:010574	0,053432	0,053432	0,053432	0,053432	0,053432
03:23:010617	0,037912	0,037912	0,037912	0,037912	0,037912
03:23:010572	0,010901	0,010901	0,010901	0,010901	0,010901
03:23:010556	0,019366	0,019366	0,019366	0,019366	0,019366
03:23:010562	0,197318	0,197318	0,197318	0,197318	0,197318
03:23:010616	0,013368	0,013368	0,013368	0,013368	0,013368
03:23:010530	0,037354	0,037354	0,037354	0,036572	0,036572
03:23:010608	0,018014	0,018014	0,018014	0,016786	0,016786

Табл. 1.5. Существующие и перспективные величины средневзвешенной плотности тепловой нагрузки в зоне действия каждого источника тепловой энергии

Nº	Наимоноронию мотоннико топпорой оноргии	Средневзвешенная плотность тепловой нагрузки, Гкал/(ч*га)						
I√I⊇	Наименование источника тепловой энергии	2022	2023	2024	2025 - 2029	2030 - 2034		
1	Центральная котельная	0,1117	0,1117	0,1117	_	-		
'	Новая блочно-модульная водогрейная газовая котельная	-	-	-	0,1077	0,1077		
2	Котельная №12	0,0460	0,0460	0,0460	(*)		
2	Котельная №6	0,0180	-	_	_	_		
3	Новая блочно-модульная водогрейная газовая котельная мощностью 7 МВт	-	0,0337	0,0337	0,0337	0,0337		
4	Котельная №10	0,0410			(**)			

Примечание: (*) — переключение тепловых нагрузок котельной №12 на Центральную котельную (строительство магистрального трубопровода от тепловой сети Центральной котельной при консервации котельной №12). Вывод из эксплуатации угольных котельных (Центральной котельной и котельной №12) с переводом котельной №12 в режим ЦТП. Строительство новой блочномодульной водогрейной газовой котельной (сценарий развития №1).

(**) – переключение тепловых нагрузок котельной №10 на котельную №6 (строительство тепловых сетей для объединения котельных). Вывод из эксплуатации угольных котельных №6 и №10 с переводом выведенной из эксплуатации котельной №10 в режим насосной станции. Строительство новой блочно-модульной водогрейной газовой котельной мощностью 7 МВт (сценарий развития №1).

Табл. 1.6. Существующие и перспективные величины средневзвешенной плотности тепловой нагрузки по каждой системе теплоснабжения

No	06	Hamanaaanaa	Средневзвешенная плотность тепловой нагрузки, Гкал/(ч*га)					
Nº	Обслуживающая организация	Наименование источника	2022	2023	2024	2025 - 2029	2030 - 2034	
1	до 05 мая 2022 года было АО «Теплоэнерго», с 05 мая 2022 года стало МП «БВК» (***)	Центральная котельная	0,51627204	0,51627204	0,51627204	-	-	
'	Новая теплоснабжающая организация	Новая блочно-модульная водогрейная газовая котельная	-	_	1	0,520254779	0,520254779	
2	до 05 мая 2022 года было АО «Теплоэнерго», с 05 мая 2022 года стало МП «БВК» (***)	Котельная №6	0,45594245	_	-	_	-	
2	Новая теплоснабжающая организация	Новая блочно-модульная водогрейная газовая котельная мощностью 7 МВт	_	0,00675676	0,00675676	0,586574122	0,586574122	
3	до 05 мая 2022 года было АО «Теплоэнерго», с 05 мая 2022 года стало МП «БВК» (***)	Котельная №12	0,50892718	92718 0,50892718 0,50892718 (*)		*)		
4	до 05 мая 2022 года было АО «Теплоэнерго», с 05 мая 2022 года стало МП «БВК» (***)	Котельная №10	0,57923706	(**)				

Примечание: (*) – переключение тепловых нагрузок котельной №12 на Центральную котельную (строительство магистрального трубопровода от тепловой сети Центральной котельной при консервации котельной №12). Вывод из эксплуатации угольных котельных (Центральной котельной и котельной №12) с переводом котельной №12 в режим ЦТП. Строительство новой блочномодульной водогрейной газовой котельной (сценарий развития №1).

- (**) переключение тепловых нагрузок котельной №10 на котельную №6 (строительство тепловых сетей для объединения котельных). Вывод из эксплуатации угольных котельных №6 и №10 с переводом выведенной из эксплуатации котельной №10 в режим насосной станции. Строительство новой блочно-модульной водогрейной газовой котельной мощностью 7 МВт (сценарий развития №1).
- (***) на основании Постановления администрации муниципального образования «город Северобайкальск» от 05 мая 2022 года № 402 о снятии статуса единой теплоснабжающей организации с АО «Теплоэнерго» и Постановления администрации муниципального образования «город Северобайкальск» от 05 мая 2022 года № 403 о присвоении статуса единой теплоснабжающей организации МП «БВК» с 05 мая 2022 года.

Табл. 1.7. Существующие и перспективные величины средневзвешенной плотности тепловой нагрузки по муниципальному образованию

No	Наименование поселения (городского округа, города		Средневзвешенная	плотность тепловой наг	рузки, Гкал/(ч*га)	
IN₽	федерального значения)	2022	2023	2024	2025 - 2029	2030 - 2034
1	муниципальное образование «город Северобайкальск»	0,4800	0,4800	0,4800	0,4802	0,4802

2. РАЗДЕЛ 2. СУЩЕСТВУЮЩИЕ И ПЕРСПЕКТИВНЫЕ БАЛАНСЫ ТЕПЛОВОЙ МОЩНОСТИ ИСТОЧНИКОВ ТЕПЛОВОЙ ЭНЕРГИИ И ТЕПЛОВОЙ НАГРУЗКИ ПОТРЕБИТЕЛЕЙ

Существующие и перспективные балансы тепловой мощности источников тепловой энергии и тепловой нагрузки потребителей приведены в Главе 4 «Существующие и перспективные балансы тепловой мощности источников тепловой энергии и тепловой нагрузки потребителей» обосновывающих материалов к схеме теплоснабжения муниципального образования «город Северобайкальск».

2.1. Описание существующих и перспективных зон действия систем теплоснабжения и источников тепловой энергии

До 05 мая 2022 года на территории муниципального образования «город Северобайкальск» снабжением потребителей тепловой энергией занималось Акционерное общество «Теплоэнерго» (далее - АО «Теплоэнерго»). Данная теплоснабжающая организация отпускала тепловую энергию в виде сетевой воды на нужды теплоснабжения потребителям следующих типов: жилые здания, административные здания, детские сады, больницы, школы, учебные заведения, предприятия общественного питания, клубы, магазины, пожарные депо, кинотеатры, гаражи, бани и гостиницы. С 05 мая 2022 года на территории муниципального образования «город Северобайкальск» снабжением потребителей тепловой энергией занимается МП «БВК».

Теплоснабжение объектов производственного и складского назначения, в зависимости от их расположения, предполагается обеспечивать, как от существующих источников централизованного теплоснабжения, так и от собственных источников тепла.

На территории муниципального образования «город Северобайкальск» расположены четыре централизованных источника тепловой энергии:

- Центральная котельная (г. Северобайкальск, ул. Промышленная д. 4), находилась до 05.05.2022 г. в эксплуатационной ответственности АО «Теплоэнерго», с 05.05.2022 г. находится в эксплуатационной ответственности МП «БВК»:
- котельная №12 (г. Северобайкальск, ул. Космонавтов д. 29), находилась до 05.05.2022 г. в эксплуатационной ответственности АО «Теплоэнерго», с 05.05.2022 г. находится в эксплуатационной ответственности МП «БВК»;
- котельная №10 (п. Заречный, ул. 18 съезда ВЛКСМ д. 2г), находилась до 05.05.2022 г. в эксплуатационной ответственности АО «Теплоэнерго», с 05.05.2022 г. находится в эксплуатационной ответственности МП «БВК»;
- котельная №6 (п. Заречный, ул. 40 лет Победы д. 34), находилась до 05.05.2022 г. в эксплуатационной ответственности АО «Теплоэнерго», с 05.05.2022 г. находится в эксплуатационной ответственности МП «БВК».

На источниках тепловой энергии в муниципальном образовании «город Северобайкальск» имеются следующие автономные источники электроснабжения:

- на Центральной котельной - АС-814р/1500 кВт;

- на котельной №12 ДЭС-200 кВт;
- на котельной №10 ДЭС-200 кВт.

Помимо вышеуказанных автономных источников электроснабжения в теплоснабжающей организации имеются резервные, передвижные источники электроснабжения - ПДЭС-125 кВт (ГСФ-100 ДУ-3), ПДЭС-100 кВт (ГСФ-180), ПДЭС-30 кВт (ДГФ-824Б).

Существующие зоны действия систем теплоснабжения и источников тепловой энергии муниципального образования «город Северобайкальск» представлены на Рис. 2.1.

Перспективные зоны действия систем теплоснабжения и источников тепловой энергии муниципального образования «город Северобайкальск» представлены на Рис. 2.2.

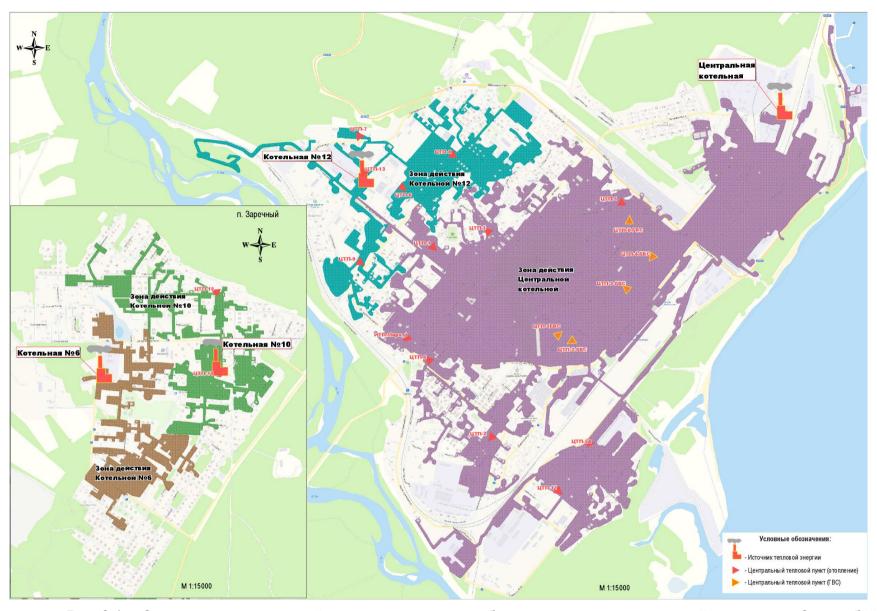


Рис. 2.1. Существующие зоны действия систем теплоснабжения и источников тепловой энергии в г. Северобайкальск и п. Заречный муниципального образования «город Северобайкальск».

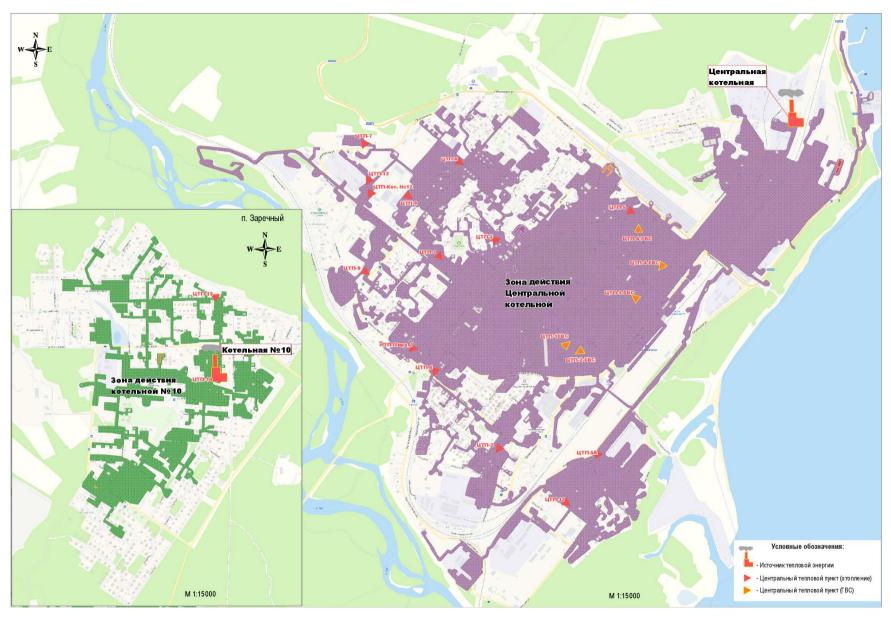


Рис. 2.2. Перспективные зоны действия систем теплоснабжения и источников тепловой энергии в г. Северобайкальск и п. Заречный муниципального образования «город Северобайкальск».

Для обеспечения температурного графика 70/55 °C в квартальных сетях на нужды отопления и 60/55 °C на нужды ГВС предусмотрены центральные тепловые пункты (далее – ЦТП) от источников тепловой энергии. Все ЦТП находятся в эксплуатационной ответственности теплоснабжающей организации, информация по ним представлена в Табл. 2.1.

Табл. 2.1. Описание центральных тепловых пунктов.

№ п/п	Наименование ЦТП (адрес)	Назначение ЦТП							
	Центральная котельная								
1	ЦТП-1 (ГВС) (ул. Парковая, д. 7Б)								
2	ЦТП-2 (ГВС) (пр. 60 лет СССР, д. 32A)								
3	ЦТП-3 (ГВС) (пр. Ленинградский, д. 6Б/1)	Приготовление теплоносителя на нужды ГВС							
4	ЦТП-4 (ГВС) (пр. 60 лет СССР, д. 10 A)								
5	ЦТП-6 (ГВС) (ул. Полиграфистов, д. 2A)								
6	ЦТП-1 (ул. Космонавтов, д.15А)								
7	ЦТП-2 (ул. Дружбы, д.21/4)								
8	ЦТП-3 (ул. Дзержинского, 27В/1)								
9	ЦТП-4 (ул. Дружбы, д.38)	Приготовление теплоносителя на нужды отопления и ГВС							
10	ЦТП-5 (ул. Объездная, д.2/2)	TBC							
11	ЦТП-5А (ул. Ольхонская, д.31Б)								
12	ЦТП-11 (пер. Майский, д. 3A)								
	котел	ьная №12							
1	ЦТП-6 (ул. Рабочая, д.6А)								
2	ЦТП-7 (ул. Объездная, д.11/2)	Приготовление теплоносителя на нужды отопления и							
3	ЦТП-8 (ул. Рабочая, д.66А)	ГВС							
4	ЦТП-9 (ул. Морских Пехотинцев, д.1Г)								
	котел	ьная №10							
1	ЦТП-14 (ул. 18 съезда ВЛКСМ, 2Г)	Приготовление теплоносителя на нужды отопления и ГВС							
2	ЦТП-15 (ул. Проходчиков, д.2А)	100							

Примечание:

- ЦТП-5Б (ул. Ольхонская, д.31А) не эксплуатируется с 2019 г. (оборудование демонтировано);
- ЦТП-10 (ул. Локомотивная, д.1А) законсервирована в связи с отсутствием подключенных потребителей с 09.2020 г;
- ЦТП-13 (ул. Космонавтов, д. 29/1) не обслуживается в связи с тем, что единственный потребитель от этого ЦТП был переключен на магистральный трубопровод.

С целью приготовления горячей воды для группы жилых домов №№ 3, 5 ,7 и 9 по ул. Промышленная установлен водоводяной подогреватель в ИТП жилого дома №5.

Информация по территории охватываемой зоной эксплуатационной ответственности теплоснабжающей организации представлена в Табл. 2.2.

№ п/п	Наименование теплоснабжающей организации	Наименование источника	Зона эксплуатационной ответственности
1		Центральная котельная	пр-кт Космонавтов, ул. Морских Пехотинцев, ул. Строителей, ул. Спортивная, ул. Байкальская, ул. Мира, ул. Ленинградская, ул. Дружбы, пр-кт Юности, ул. Магистральная, ул. Ольхонская, пр-кт Ленинградский, ул. Студенческая, ул. Полиграфистов, ул. Промышленная, ул. Бамовская, ул. Портовая
2	до 05 мая 2022 года было AO «Теплоэнерго», с 05	котельная №12	ул. Объездная, пр. Космонавтов, ул. Морских Пехотинцев, ул. Байкальская, ул. Рабочая, пер. Транспортный, ул. Заводская,
3	мая 2022 года стало МП «БВК» (*)	котельная №10	ул. Восстановителей, ул. Первомайская, ул. Мостостроителей, ул. Проходчиков, ул. Геологическая, ул. Первомайская, ул. 60 лет ВЛКСМ, ул. Профсоюзная, ул. 40 лет Победы, ул. 18 Съезда ВЛКСМ, ул. Рябиновая
4		котельная №6	пр-зд Фролихинский, ул. Северная, ул. 60 лет ВЛКСМ, ул. Мысовая, ул. 40 лет Победы, ул. Рябиновая, ул. Свободы, ул. Московская, ул. Крупской

Табл. 2.2. Зона эксплуатационной ответственности теплоснабжающей организации

Примечание: (*) — на основании Постановления администрации муниципального образования «город Северобайкальск» от 05 мая 2022 года № 402 о снятии статуса единой теплоснабжающей организации с АО «Теплоэнерго» и Постановления администрации муниципального образования «город Северобайкальск» от 05 мая 2022 года № 403 о присвоении статуса единой теплоснабжающей организации МП «БВК» с 05 мая 2022 года.

2.2. Описание существующих и перспективных зон действия индивидуальных источников тепловой энергии

В Главе 7 «Предложения по строительству, реконструкции, техническому перевооружению и (или) модернизации источников тепловой энергии» обосновывающих материалов к схеме теплоснабжения муниципального образования «город Северобайкальск» представлены условия организации индивидуального теплоснабжения.

Согласно данным генерального плана муниципального образования «город Северобайкальск» зоны действия индивидуального теплоснабжения в настоящее время ограничиваются малоэтажным жилым фондом и частным сектором с печным отоплением. В качестве источника горячего водоснабжения используются двухконтурные отопительные котлы и электрические водонагреватели.

При выборе подключения индивидуальной жилой застройки к централизованному или децентрализованному источнику, необходимо учесть плотность тепловой нагрузки и протяженность тепловых сетей. Большая протяженность и малый диаметр участков тепловых сетей повлечет за собой неоправданные финансовые затраты, потери тепловой энергии через теплоизоляционные материалы и высокую вероятность замерзания теплоносителя, приводящего к аварийным ситуациям.

2.3. Существующие и перспективные балансы тепловой мощности и тепловой нагрузки потребителей в зонах действия источников тепловой энергии, в том числе работающих на единую тепловую сеть, на каждом этапе

Балансы существующей располагаемой тепловой мощности источников тепловой энергии и перспективной тепловой нагрузки в зоне действия источников тепловой энергии (прогнозируемые в соответствии с Методическими рекомендациями по разработке схем теплоснабжения) определяются по балансам существующей тепловой мощности «нетто» источников тепловой энергии и тепловой нагрузки на коллекторах источников.

Балансы существующей тепловой мощности и перспективной тепловой нагрузки в зоне действия источников тепловой энергии муниципального образования «город Северобайкальск» приведены в таблице ниже.

Табл. 2.3. Существующие и перспективные балансы тепловой мощности и тепловой нагрузки потребителей в зонах действия источников тепловой энергии, в том числе работающих на единую тепловую сеть

Hamana and a same and a same and a same a			Этапы		
Наименование параметра	2022	2023	2024	2025 - 2029	2030 - 2034
Центральная котельная (угольная)				водогрейн	ю-модульная ная газовая пьная
Установленная тепловая мощность, Гкал/ч	164,00	164,00	164,00	100,00	100,00
Располагаемая тепловая мощность, Гкал/ч	99,75	99,75	99,75	95,00	95,00
Технические ограничения на использование		ажистых отло й поверхност			я наладка х устройств
Потребление тепловой мощности на собственные и хозяйственные нужды источника тепловой энергии, Гкал/ч	7,478	7,478	7,478	2,260	2,260
Затраты тепловой мощности на собственные и хозяйственные нужды источника тепловой энергии, млн.руб.	0,02144	0,02022	0,02144	0,00818	0,01094
Тепловая мощность источника тепловой энергии нетто, Гкал/ч	92,272	92,272	92,272	92,740	92,740
Суммарная тепловая нагрузка потребителей, Гкал/ч	37,564	37,824	37,824	43,178	43,178
Тепловые потери через утечки, Гкал/ч	1,685	1,711	1,733	1,797	1,797
Тепловые потери через теплоизоляцию, Гкал/ч	13,449	13,408	13,712	14,472	14,305
Затраты теплоносителя на компенсацию тепловых потерь, млн.руб.	0,04338	0,04088	0,04427	0,05888	0,07798
Присоединенная тепловая нагрузка(с учетом тепловых потерь в тепловых сетях), Гкал/ч	52,698	52,943	53,269	59,447	59,279
Дефицит (резерв) тепловой мощности источника тепловой энергии, Гкал/ч	39,574	39,329	39,003	33,293	33,461
Котельная №12 (угольная)				водогрейн	но-модульная ная газовая пьная
Установленная тепловая мощность, Гкал/ч	11,505	11,505	11,505	0,000	0,000
Располагаемая тепловая мощность, Гкал/ч	10,220	10,220	10,220	0,000	0,000
Технические ограничения на использование		ажистых отло й поверхност			ие котельной ентральную

	Этапы					
Наименование параметра		2023	2024	2025 - 2029	2030 - 2034	
Потребление тепловой мощности на собственные и хозяйственные нужды источника тепловой энергии, Гкал/ч	0,525	0,525	0,525	котельную (строительств		
Затраты тепловой мощности на собственные и хозяйственные нужды источника тепловой энергии, млн.руб	0,00150	0,00159	0,00168	сети Централі	а от тепловой ьной котельной	
Тепловая мощность источника тепловой энергии нетто, Гкал/ч	9,695	9,695	9,695		ции котельной 13 эксплуатации	
Суммарная тепловая нагрузка потребителей, Гкал/ч	2,603	2,603	2,603	,	КОТЕЛЬНЫХ	
Тепловые потери через утечки, Гкал/ч	0,048	0,048	0,048		й котельной и 2) с переводом	
Тепловые потери через теплоизоляцию, Гкал/ч	1,648	1,648	1,648		2) с переводом 2 в режим ЦТП.	
Затраты теплоносителя на компенсацию тепловых потерь, млн.руб.	0,00433	0,00459	0,00486		новой блочно-	
Присоединенная тепловая нагрузка(с учетом тепловых потерь в тепловых сетях), Гкал/ч	4,299	4,299	4,299	модульной водогрейной газовой котельной (сценар		
Дефицит (резерв) тепловой мощности источника тепловой энергии, Гкал/ч	5,40	5,40	5,40	развития №1)		
Котельная №6 (угольная)		Новая блочно-модульная водогрейная газовая котельная мощностью 7 МВт				
Установленная тепловая мощность, Гкал/ч	6,000	6,020	6,020	6,020	6,020	
Располагаемая тепловая мощность, Гкал/ч	4,650	5,720	5,720	5,720	5,720	
Технические ограничения на использование	Наличие сажистых отложений на внутренней поверхности котлов	Режимная наладка горелочных устройств			стройств	
Потребление тепловой мощности на собственные и хозяйственные нужды источника тепловой энергии, Гкал/ч	0,000	0,136	0,136	0,136	0,136	
Затраты тепловой мощности на собственные и хозяйственные нужды источника тепловой энергии, млн.руб	0,000	0,00039	0,00041	0,00049	0,00066	
Тепловая мощность источника тепловой энергии нетто, Гкал/ч	4,650	5,584	5,584	5,584	5,584	
Суммарная тепловая нагрузка потребителей, Гкал/ч	0,5955	2,410	2,410	2,428	2,428	
Тепловые потери через утечки, Гкал/ч	0,006	0,019	0,019	0,019	0,019	

Наименование параметра		Этапы						
		2023	2024	2025 - 2029	2030 - 2034			
Тепловые потери через теплоизоляцию, Гкал/ч	0,761	1,743	1,743	1,659	1,542			
Затраты теплоносителя на компенсацию тепловых потерь, млн.руб.	0,00196	0,00505	0,00535	0,00607	0,00756			
Присоединенная тепловая нагрузка(с учетом тепловых потерь в тепловых сетях), Гкал/ч	1,363	4,172	4,172	4,106	3,989			
Дефицит (резерв) тепловой мощности источника тепловой энергии, Гкал/ч	3,29	1,412	1,412	1,478	1,595			
Котельная №10 (угольная)		Новая		льная водогрейн мощностью 7 МЕ				
Установленная тепловая мощность, Гкал/ч	8,400	0,000	0,000	0,000	0,000			
Располагаемая тепловая мощность, Гкал/ч	6,900	0,000	0,000	0,000	0,000			
Технические ограничения на использование	Наличие сажистых отложений на внутренней поверхности котлов							
Потребление тепловой мощности на собственные и хозяйственные нужды источника тепловой энергии, Гкал/ч	0,383	котельну	ую №6 (строит	ых нагрузок котел гельство тепловы	ых сетей для			
Затраты тепловой мощности на собственные и хозяйственные нужды источника тепловой энергии, млн.руб	0,00104	уголь	ных котельнь	ых). Вывод из эі іх №6 и №10 с п	ереводом			
Тепловая мощность источника тепловой энергии нетто, Гкал/ч	6,517			тации котельной гроительство ног				
Суммарная тепловая нагрузка потребителей, Гкал/ч	1,554	насосной станции. Строительство новой блочномодульной водогрейной газовой котельной мощност МВт (сценарий развития №1)			ой мощностью 7			
Тепловые потери через утечки, Гкал/ч	0,011				1)			
Тепловые потери через теплоизоляцию, Гкал/ч	0,999							
Затраты теплоносителя на компенсацию тепловых потерь, млн.руб.	0,00258							
Присоединенная тепловая нагрузка(с учетом тепловых потерь в тепловых сетях), Гкал/ч	2,564							
Дефицит (резерв) тепловой мощности источника тепловой энергии, Гкал/ч	3,953							

2.4. Перспективные балансы тепловой мощности источников тепловой энергии и тепловой нагрузки потребителей в случае, если зона действия источника тепловой энергии расположена в границах двух и более поселений, городских округов либо в границах городского округа (поселения) и города федерального значения или городских округов (поселений) и города федерального значения, с указанием величины тепловой нагрузки для потребителей каждого поселения, городского округа, города федерального значения

Действующим генеральным планом муниципального образования «город Северобайкальск» не предусматриваются зоны действия источников тепловой энергии расположенных в границах двух и более поселений. Все источники тепловой энергии расположены в границах муниципального образования «город Северобайкальск».

Перспективные тепловые нагрузки потребителей, находящихся в зонах действия источников тепловой энергии, расположены в пределах границы муниципального образования «город Северобайкальск».

2.5. Радиус эффективного теплоснабжения, определяемый в соответствии с методическими указаниями по разработке схем теплоснабжения

Согласно п. 30 г. 2 ФЗ №190 от 27.07.2010 г.: «Радиус эффективного теплоснабжения - максимальное расстояние от теплопотребляющей установки до ближайшего источника тепловой энергии в системе теплоснабжения, при превышении которого подключение теплопотребляющей установки к данной системе теплоснабжения нецелесообразно по причине увеличения совокупных расходов в системе теплоснабжения».

Основными критериями оценки целесообразности подключения новых потребителей в зоне действия систем централизованного теплоснабжения являются:

- затраты на строительство новых участков тепловой сети и реконструкция существующих участков;
- пропускная способность существующих магистральных тепловых сетей;
- затраты на перекачку теплоносителя в тепловых сетях;
- потери тепловой энергии в тепловых сетях при ее передаче;
- надежность системы теплоснабжения.

Комплексная оценка вышеперечисленных факторов, определяет величину эффективного радиуса теплоснабжения.

В настоящее время в муниципальном образовании «город Северобайкальск» действует 4 централизованных источника теплоснабжения. Карта-схема поселения с делением на зоны действия источников тепловой энергии муниципального образования «город Северобайкальск» приведена на Рис. 2.1.

Радиус эффективного теплоснабжения, позволяет определить условия, при которых подключение новых или увеличения тепловых нагрузок теплопотребляющих установок к

системе теплоснабжения нецелесообразно вследствие увеличения совокупных расходов в указанной системе на единицу тепловой мощности.

Перечень исходных данных для расчета радиуса эффективного теплоснабжения по источникам тепловой энергии муниципального образования «город Северобайкальск» приведен в Табл. 2.4.

Радиус эффективного теплоснабжения, определяемый для зоны действия каждого источника тепловой энергии представлен в Табл. 2.5.

Схема муниципального образования «город Северобайкальск» с указанием радиуса эффективного теплоснабжения источников тепловой энергии представлена на Рис. 2.3.

Табл. 2.4. Исходные данные для расчета радиуса эффективного теплоснабжения по источникам тепловой энергии муниципального образования «город Северобайкальск»

№ п/п	Источник тепловой энергии	Площадь зоны действия источника тепловой энергии по площадям элементов территориального деления, тыс.м²	Номер условного участка зоны действия	Расстояние от источника до центра условного участка, м	Суммарная тепловая нагрузка Потребителей, Гкал/ч	Продолжительность отопительного периода, ч	Тариф на отпуск тепловой энергии, руб./Гкал
1			1	530	4,496		
2	Центральная котельная	3386,3091	2	1575	12,874	6504	3064,12
3			3	3000	20,453		
4			1	630	0,295		
5	Котельная №10	379,2722	2	708	0,975	6504	3064,12
6			3	200	0,285		
7	Kononi wan Na10	FCC 4944	1	315	0,894	CEO4	2064.40
8	Котельная №12	566,4814	2	966	0,830	6504	3064,12
9			1	220	0,880		
10	Котельная №6	331,4505	2	685	0,285	6504	3064,12
11			3	708	0,311		

Примечание: информацию по тепловой нагрузке потребителей муниципального образования «город Северобайкальск» предоставила теплоснабжающая организация - АО «Теплоэнерго» в 2021 г., на момент актуализации схемы теплоснабжения в 2022 г. тепловая нагрузка АО «Теплоэнерго» (*) не была предоставлена.

(*) - на основании Постановления администрации муниципального образования «город Северобайкальск» от 05 мая 2022 года № 402 о снятии статуса единой теплоснабжающей организации с АО «Теплоэнерго» и Постановления администрации муниципального образования «город Северобайкальск» от 05 мая 2022 года № 403 о присвоении статуса единой теплоснабжающей организации МП «БВК» с 05 мая 2022 года.

Табл. 2.5. Результаты расчета радиуса эффективного теплоснабжения

№ п/п	Источник тепловой энергии	Подключенная тепловая энергия, Гкал/ч	Расчетный годовой отпуск, тыс. Гкал	Радиус эффективного теплоснабжения, м
1	Центральная котельная	37,824	240,071	2064
2	Котельная №10	1,554	11,982	560
3	Котельная №12	2,603	22,327	541
4	Котельная №6	0,595	7,065	484

Примечание: информацию по тепловой нагрузке потребителей муниципального образования «город Северобайкальск» предоставила теплоснабжающая организация - АО «Теплоэнерго» в 2021 г., на момент актуализации схемы теплоснабжения в 2022 г. тепловая нагрузка АО «Теплоэнерго» (*) не была предоставлена.

(*) - на основании Постановления администрации муниципального образования «город Северобайкальск» от 05 мая 2022 года № 402 о снятии статуса единой теплоснабжающей организации с АО «Теплоэнерго» и Постановления администрации муниципального образования «город Северобайкальск» от 05 мая 2022 года № 403 о присвоении статуса единой теплоснабжающей организации МП «БВК» с 05 мая 2022 года.

.

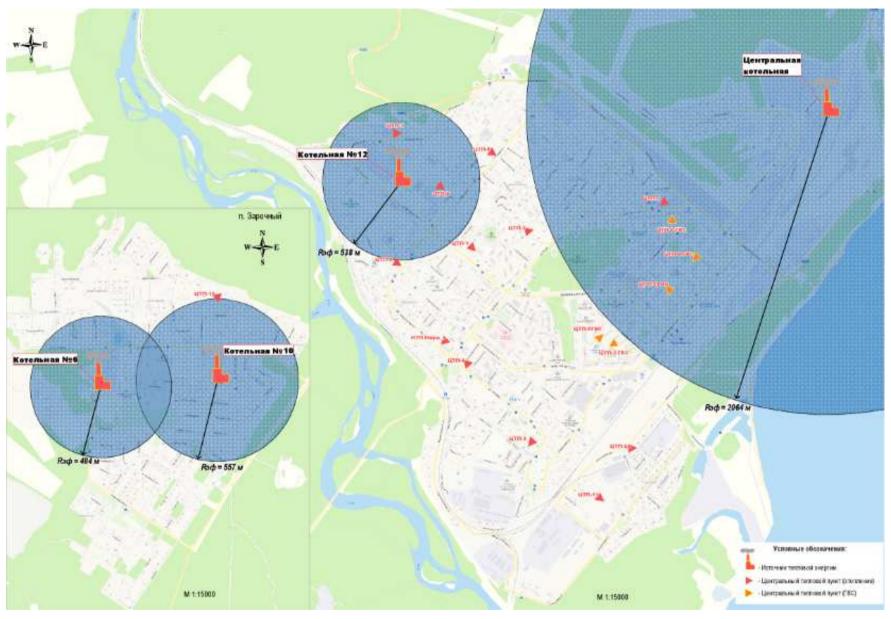


Рис. 2.3. Схема существующих радиусов эффективного теплоснабжения от источников муниципального образования «город Северобайкальск» (Центральная котельная, котельные №12, №10 и №6).

3. РАЗДЕЛ 3. СУЩЕСТВУЮЩИЕ И ПЕРСПЕКТИВНЫЕ БАЛАНСЫ ТЕПЛОНОСИТЕЛЯ

Существующие и перспективные балансы теплоносителя приведены в Главе 6 «Существующие и перспективные балансы производительности водоподготовительных установок и максимального потребления теплоносителя теплопотребляющими установками потребителей, в том числе в аварийных режимах» обосновывающих материалов к схеме теплоснабжения муниципального образования «город Северобайкальск».

3.1. Существующие и перспективные балансы производительности водоподготовительных установок и максимального потребления теплоносителя теплопотребляющими установками потребителей

В ходе сопоставления нормативных и фактических потерь теплоносителя в существующих системах транспорта тепловой энергии от источников централизованного теплоснабжения, было выявлено, что фактические потери теплоносителя в тепловых сетях превышают нормативные потери теплоносителя, рассчитанные в соответствии с существующими характеристиками тепловых сетей. Несмотря на несоответствие фактических и нормативных потерь теплоносителя в тепловых сетях в существующих системах теплоснабжения может быть выполнен ряд организационных и технических мероприятий. К организационным мероприятиям следует отнести составление планов и проведение энергетического аудита и энергетического обследования тепловых сетей на предмет выявления наибольших потерь теплоносителя в тепловых сетях.

Для снижения коммерческих потерь теплоносителя рекомендуется оснащение приборами учета потребителей тепловой энергии.

Для снижения потерь теплоносителя при транспортировке тепловой энергии потребителям рекомендуются следующие мероприятия:

- 1) проведение мероприятий по снижению аварийности на тепловых сетях в соответствии с Главой 11 «Оценка надежности теплоснабжения»;
- 2) перекладка трубопроводов тепловых сетей в соответствии с планами развития теплоснабжающей организацией:
- 3) применение при прокладке тепловых сетей трубопроводов в монолитной тепловой изоляции с системами дистанционной диагностики состояния трубопроводов;
- 4) использование мобильных измерительных комплексов для диагностики состояния тепловых сетей.

Существующие и перспективные балансы производительности ВПУ и подпитки тепловой сети с учетом увеличения нормативных расходов теплоносителя приведены в Табл. 3.1.

Существующие и перспективные балансы производительности ВПУ и подпитки тепловой сети с учетом увеличения нормативных расходов теплоносителя приведены в Главе 6 «Существующие и перспективные балансы производительности водоподготовительных установок и максимального потребления теплоносителя теплопотребляющими установками потребителей, в том числе в аварийных режимах»

обосновывающих материалов к схеме теплоснабжения муниципального образования «город Северобайкальск».

3.2. Существующие и перспективные балансы производительности водоподготовительных установок источников тепловой энергии для компенсации потерь теплоносителя в аварийных режимах работы систем теплоснабжения

Прогнозируемые приросты нормативных потерь теплоносителя определяются, как произведение нормативной среднегодовой утечки на прогнозируемые приросты объемов теплоносителя.

Существующие балансы производительности водоподготовительных установок, фактического потребления и нормативного, максимального компенсации теплоносителя аварийных режимах работы системы теплоснабжения В теплопотребляющими установками потребителей приведены составе таблиц В предыдущего пункта (3.1).

Нагрузка на ВПУ источников тепловой энергии складываться из следующих составляющих:

- собственные нужды теплоисточника;
- подпитка тепловой сети.

Табл. 3.1. Существующие балансы производительности водоподготовительных установок, нормативного, максимального фактического потребления теплоносителя и компенсации потерь теплоносителя в аварийных режимах работы систем теплоснабжения теплопотребляющими установками потребителей

Показатель	Ед. изм.	2022	2023	2024	2025 - 2029	2030 - 2034	
Центральная котельная (угольная)	Новая блочно-модульная водогрейная газовая котельная						
Производительность ВПУ	т/ч	552	552	552	552	552	
Средневзвешенный срок службы	лет	н/д	н/д	н/д	н/д	н/д	
Располагаемая производительность ВПУ	т/ч	552	552	552	552	552	
Собственные нужды	т/ч	-	-	-	-	-	
Всего подпитка тепловой сети, в т.ч.:	т/ч	55,77	56,88	58,00	58,18	58,17	
нормативные утечки теплоносителя	т/ч	40,34	40,62	40,90	41,56	41,64	
сверхнормативные утечки теплоносителя	т/ч	-	-	-	-	-	
отпуск теплоносителя из тепловых сетей на цели горячего водоснабжения (для открытых систем теплоснабжения)	т/ч	15,43	16,26	17,10	16,62	16,53	
Максимум подпитки тепловой сети в эксплуатационном режиме	т/ч	154,85	156,41	165,47	166,83	167,75	
Максимальная подпитка тепловой сети в период повреждения участка	т/ч	552	552	552	552	552	
Резерв (+)/дефицит (-) ВПУ	т/ч	496,23	495,12	494,00	493,82	493,83	
Доля резерва	%	90%	90%	89%	89%	89%	
Котельная №12 (угольная)	Переключен	ие тепловых					
Производительность ВПУ	т/ч	74	74		нагрузок коте	льной №12 на	
Средневзвешенный срок службы	лет н/д		н/д			ю котельную епьство	
Располагаемая производительность ВПУ	т/ч	74	74		(строительство магистрального трубопровода		
Собственные нужды	т/ч	-	-		от тепловой сети Центральной		

Показатель	Ед. изм.	2022	2023	2024	2025 - 2029	2030 - 2034	
Всего подпитка тепловой сети, в т.ч.:	т/ч	2,04	2,04 2,04 котельной при к				
нормативные утечки теплоносителя	т/ч	1,11	1,11	1,11	VOTORI UOŬ NO12\ DI IDOR		
сверхнормативные утечки теплоносителя	т/ч	-	-	-		ии угольных Центральной	
отпуск теплоносителя из тепловых сетей на цели горячего водоснабжения (для открытых систем теплоснабжения)	т/ч	0,93	0,93	0,93	котельной и ко переводом ко	тельной №12) с тельной №12 в	
Максимум подпитки тепловой сети в эксплуатационном режиме	т/ч	9,63	9,64	2,17		Строительство	
Максимальная подпитка тепловой сети в период повреждения участка	т/ч	74	74	74		ю-модульной ной газовой	
Резерв (+)/дефицит (-) ВПУ	т/ч	71,96	71,96	71,96	котельной (сце	нарий развития	
Доля резерва	%	97%	97%	97%	` Nº1).		
Котельная №6 (угольная)	1	1	Новая блочно-модульная водогрейная газовая котельная мощностью 7 МВт				
Производительность ВПУ	т/ч	86	1,55	1,55	1,55	1,55	
Средневзвешенный срок службы	лет	-	н/д	н/д	н/д	н/д	
Располагаемая производительность ВПУ	т/ч	86	1,55	1,55	1,55	1,55	
Собственные нужды	т/ч	-	-	-	-	-	
Всего подпитка тепловой сети, в т.ч.:	т/ч	0,51	1,53	1,53	1,53	1,54	
нормативные утечки теплоносителя	т/ч	0,51	1,53	1,53	1,53	1,54	
сверхнормативные утечки теплоносителя	т/ч	-	-	-	-	-	
отпуск теплоносителя из тепловых сетей на цели горячего водоснабжения (для открытых систем теплоснабжения)	т/ч	0,00	0,00	0,00	0,00	0,00	
Максимум подпитки тепловой сети в эксплуатационном режиме	т/ч	4,40	5,81	6,06	6,38	6,42	
Максимальная подпитка тепловой сети в период повреждения участка	т/ч	86	1,55	1,55	1,55	1,55	
Резерв (+)/дефицит (-) ВПУ	т/ч	85,49	0,02	0,02	0,02	0,01	
Доля резерва	%	99%	1%	1%	1%	1%	
Котельная №10 (угольная)					вых нагрузок кот		
Производительность ВПУ	т/ч	60	котельную №6 (строительство тепловых сетей объединения котельных). Вывод из эксплуата				
Средневзвешенный срок службы	лет	н/д					
Располагаемая производительность ВПУ	т/ч	60	угольных котельных №6 и №10 с переводом выведенной из эксплуатации котельной №10 в режи				

Показатель	Ед. изм.	2022	2023	2024	2025 - 2029	2030 - 2034
Собственные нужды	т/ч	-		•	Строительство н	
Всего подпитка тепловой сети, в т.ч.:	т/ч	0,88			рейной газовой і т (сценарий разв	
нормативные утечки теплоносителя	т/ч	0,88	МОЩ	IOCIDIO 7 IVID	т (оценарии разы	WII WIZI 142 1 j.
сверхнормативные утечки теплоносителя	т/ч	-				
отпуск теплоносителя из тепловых сетей на цели горячего водоснабжения (для открытых систем теплоснабжения)	т/ч	0,00				
Максимум подпитки тепловой сети в эксплуатационном режиме	т/ч	7,14				
Максимальная подпитка тепловой сети в период повреждения участка	т/ч	60				
Резерв (+)/дефицит (-) ВПУ	т/ч	59,12				
Доля резерва	%	99%				

4. РАЗДЕЛ 4. ОСНОВНЫЕ ПОЛОЖЕНИЯ МАСТЕР-ПЛАНА РАЗВИТИЯ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ «ГОРОД СЕВЕРОБАЙКАЛЬСК»

Основные положения мастер-плана развития систем теплоснабжения муниципального образования «город Северобайкальск» приведены в Главе 5 «Мастерплан развития систем теплоснабжения муниципального образования «город Северобайкальск» обосновывающих материалов к схеме теплоснабжения муниципального образования «город Северобайкальск».

4.1. Описание сценариев развития теплоснабжения муниципального образования «город Северобайкальск»

Развитие системы теплоснабжения муниципального образования «город Северобайкальск» возможно по двум сценариям, рассмотренные ниже.

Вариант перспективного развития №1 (сценарий развития №1) в соответствии с протоколами совещаний и решениями по вопросу модернизации котельных в Республики Бурятия с переводом на СПГ предусматривает переключение тепловых нагрузок котельной №10 на котельную №6, переключение тепловых нагрузок котельной №12 на Центральную котельную, поэтапный вывод из эксплуатации угольных котельных (Центральная котельные №6, №10 и №12), строительство двух блочно-модульных котельная, водогрейных газовых котельных с оборудованием вместо четырех строительство тепловых сетей для объединения котельных. А также с учетом предложений обеспечения качественного И надежного теплоснабжения муниципального образования «город Северобайкальск» в сценарий развития №1 представлены следующие мероприятия:

- 1) Реконструкция тепловой сети с консервацией котельной №12 (2022 г.);
- 2) Модернизация ЦТП-4 (ГВС) в 2026 г., ЦТП-6 (ГВС) в 2025 г., ЦТП-1 (2026-2027 гг.), ЦТП-2 (2026 г.), ЦТП-3 (2025-2026 гг.), ЦТП-4 (года реализации 2021-2022 гг., в 2021 г. закуплены материалы и оборудование (выполнение 1 этапа)), ЦТП-5 (года реализации 2021-2022 гг., в 2021 г. закуплены материалы и оборудование (выполнение 1 этапа)), ЦТП-11 (2027 г.), ЦТП-8 (года реализации 2021-2022 гг., 1 этап не выполнен в связи с отсутствием финансирования), ЦТП-9 (год реализации 2021 г., модернизация не выполнена в связи с отсутствием финансирования), ЦТП-15 (2026 г.);
- 3) Переключение тепловых нагрузок котельной №10 на котельную №6 (строительство тепловых сетей для объединения котельных). Вывод из эксплуатации угольных котельных №6 и №10 с переводом выведенной из эксплуатации котельной №10 в режим ЦТП. Строительство новой блочномодульной водогрейной газовой котельной мощностью 7 МВт (2022 г.);
- 4) Вывод из эксплуатации угольных котельных (Центральной котельной и котельной №12) с переводом котельной №12 в режим ЦТП. Строительство новой блочно-модульной водогрейной газовой котельной (2023-2024 гг.);

- 5) Реконструкция и (или) модернизация тепловых сетей в связи с исчерпанием эксплуатационного ресурса;
- 6) Строительство, реконструкция и (или) модернизация тепловых сетей для повышения эффективности функционирования систем теплоснабжения, в том числе за счет перевода в пиковый режим работы или ликвидации котельных;
- 7) Строительство, реконструкция и (или) модернизация тепловых сетей с увеличением диаметра трубопроводов для обеспечения перспективных приростов тепловой нагрузки;
- 8) Строительство тепловых сетей для обеспечения нормативной надежности теплоснабжения;
- 9) Строительство тепловых сетей для обеспечения перспективных приростов тепловой нагрузки во вновь осваиваемых районах;
- 10) Перевод потребителей с открытой на закрытую схему теплоснабжения;
- 11) Внедрение интерактивной системы управления городской схемой теплоснабжения (года реализации 2022-2023 гг., в 2021 г. разработана ПСД специализированной организацией);
- 12) Гидравлическая регулировка тепловых сетей с установкой запорнорегулирующей (балансировочной) арматуры от источников тепловой энергии;
- 13) Подключение объекта «Нежилое помещение» по адресу: ул. Рабочая, д. 23в к системе централизованного теплоснабжения.

Вариант перспективного развития №2 (сценарий развития №2) в соответствии с внесением изменений в инвестиционную программу АО «Теплоэнерго» в сфере теплоснабжения на 2020-2027 гг. и предложениями для обеспечения качественного и надежного теплоснабжения муниципального образования «город Северобайкальск» предусматривает:

- 1) Реконструкция тепловой сети с консервацией котельной №12 (2022 г.). Переключение тепловых нагрузок котельной №12 на Центральную котельную (строительство магистрального трубопровода от тепловой сети Центральной котельной при консервации котельной №12) с переводом котельной №12 в режим ЦТП с реконструкцией тепловых сетей (2022 г.);
- 2) Модернизация питающего трубопровода котлоагрегатов №3 (2024 г.), №6 (2024 г.), №9 (2023-2024 гг.) Центральной котельной;
- 3) Модернизация ЦТП-4 (ГВС) в 2026 г., ЦТП-6 (ГВС) в 2025 г., ЦТП-1 (2026-2027 гг.), ЦТП-2 (2026 г.), ЦТП-3 (2025-2026 гг.), ЦТП-4 (года реализации 2021-2022 гг., в 2021 г. закуплены материалы и оборудование (выполнение 1 этапа)), ЦТП-5 (года реализации 2021-2022 гг., в 2021 г. закуплены материалы и оборудование (выполнение 1 этапа)), ЦТП-11 (2027 г.), ЦТП-8 (года реализации 2021-2022 гг., 1 этап не выполнен в связи с отсутствием финансирования), ЦТП-9 (год реализации 2021 г., модернизация не выполнена в связи с отсутствием финансирования), ЦТП-15 (2026 г.);
- 4) Модернизация Центральной котельной при внедрении автоматизированной системы управления технологическим процессом водогрейных котлов №3, №4, №5, №6, №8, №9 (2024-2025 г.г.);

- 5) Модернизация группы сетевых насосов Центральной котельной в летний режим работы (2023 г.)
- 6) Переключение тепловых нагрузок котельной №10 на котельную №6 (строительство тепловых сетей для объединения котельных) с переводом выведенной из эксплуатации котельной №10 в режим насосной станции с реконструкцией тепловых сетей (2022 г.);
- 7) Реконструкция и (или) модернизация тепловых сетей в связи с исчерпанием эксплуатационного ресурса;
- 8) Строительство, реконструкция и (или) модернизация тепловых сетей для повышения эффективности функционирования систем теплоснабжения, в том числе за счет перевода в пиковый режим работы или ликвидации котельных;
- 9) Строительство, реконструкция и (или) модернизация тепловых сетей с увеличением диаметра трубопроводов для обеспечения перспективных приростов тепловой нагрузки;
- 10) Строительство тепловых сетей для обеспечения нормативной надежности теплоснабжения;
- 11) Строительство тепловых сетей для обеспечения перспективных приростов тепловой нагрузки во вновь осваиваемых районах;
- 12) Перевод потребителей с открытой на закрытую схему теплоснабжения;
- 13) Внедрение интерактивной системы управления городской схемой теплоснабжения (года реализации 2022-2023 гг., в 2021 г. разработана ПСД специализированной организацией);
- 14) Гидравлическая регулировка тепловых сетей с установкой запорнорегулирующей (балансировочной) арматуры от источников тепловой энергии;
- 15) Подключение объекта «Нежилое помещение» по адресу: ул. Рабочая, д. 23в к системе централизованного теплоснабжения.

4.2. Обоснование выбора приоритетного сценария развития теплоснабжения муниципального образования «город Северобайкальск»

Сравнение стоимости запланированных мероприятий представлено в Табл. 4.1.

Табл. 4.1. Объем инвестиций на развитие системы теплоснабжения муниципального образования «город Северобайкальск»

№ п/п	Наименование мероприятия	Общая стоимость внедрения мероприятия в ценах 2022 г., млн. руб.
1	Сценарий развития №1	1 055,725
2	Сценарий развития №2	767,346

Реализация одного из представленных выше сценариев развития потребует объем инвестиций, как бюджетных, так и внебюджетных средств.

5. РАЗДЕЛ 5. ПРЕДЛОЖЕНИЯ ПО СТРОИТЕЛЬСТВУ, РЕКОНСТРУКЦИИ, ТЕХНИЧЕСКОМУ ПЕРЕВООРУЖЕНИЮ И (ИЛИ) МОДЕРНИЗАЦИИ ИСТОЧНИКОВ ТЕПЛОВОЙ ЭНЕРГИИ

Предложения по строительству, реконструкции, техническому перевооружению и (или) модернизации источников тепловой энергии, расположенных на территории муниципального образования «город Северобайкальск», в первую очередь определяются генеральным планом муниципального образования «город Северобайкальск», решениями Правительства Республики Бурятия по развитию инфраструктуры и предложениями от теплоснабжающей организации.

5.1. Предложения по строительству источников тепловой энергии, обеспечивающих перспективную тепловую нагрузку на осваиваемых территориях муниципального района, для которых отсутствует возможность и (или) целесообразность передачи тепловой энергии от существующих или реконструируемых источников тепловой энергии, обоснованная расчетами ценовых (тарифных) последствий для потребителей (в ценовых зонах теплоснабжения – обоснованная расчетами ценовых (тарифных) последствий для потребителей, если реализацию товаров в сфере теплоснабжения с использованием такого источника тепловой энергии планируется осуществлять по регулируемым ценам (тарифам), и (или) обоснованная анализом теплоснабжения развития системы индикаторов городского округа, города федерального значения, если реализация сфере теплоснабжения с использованием источника тепловой энергии будет осуществляться по определяемым по соглашению сторон договора поставки тепловой энергии (мощности) и (или) теплоносителя) и радиуса эффективного теплоснабжения

В соответствии с утвержденным генеральным планом муниципального образования «город Северобайкальск» в актуализируемой схеме теплоснабжения не предусмотрено строительство новых источников тепловой энергии на вновь осваиваемой территории.

Варианты перспективного развития №1 предусматривает строительство двух новых блочно-модульных водогрейных газовых котельных вместо четырех угольных в зоне действия выведенных из эксплуатации источников тепла.

5.2. Предложения по реконструкции источников тепловой энергии, обеспечивающих перспективную тепловую нагрузку в существующих и расширяемых зонах действия источников тепловой энергии

Реконструкция котельных (Центральная котельная и котельная №10), обеспечивающих перспективную тепловую нагрузку в существующих и расширяемых зонах действия источников тепловой энергии, предусмотрена в сценарии развития №2 теплоснабжения муниципального образования «город Северобайкальск».

5.3. Предложения по техническому перевооружению и (или) модернизации источников тепловой энергии с целью повышения эффективности работы систем теплоснабжения

С целью повышения эффективности работы систем теплоснабжения муниципального образования в обоих вариантах перспективного развития (№1 и №2) предусматриваются следующие технические перевооружения на источниках тепловой энергии:

- модернизация питающего трубопровода котлоагрегатов №3 (2024 г.), №6 (2024 г.), №8 (2024 г.), №9 (2023-2024 гг.) Центральной котельной;
- модернизация ЦТП-4 (ГВС) в 2026 г., ЦТП-6 (ГВС) в 2025 г., ЦТП-1 (2026-2027 гг.), ЦТП-2 (2026 г.), ЦТП-3 (2025-2026 гг.), ЦТП-4 (года реализации 2021-2022 гг., в 2021 г. закуплены материалы и оборудование (выполнение 1 этапа)), ЦТП-5 (года реализации 2021-2022 гг., в 2021 г. закуплены материалы и оборудование (выполнение 1 этапа)), ЦТП-11 (2027 г.), ЦТП-8 (года реализации 2021-2022 гг., 1 этап не выполнен в связи с отсутствием финансирования), ЦТП-9 (год реализации 2021 г., модернизация не выполнена в связи с отсутствием финансирования), ЦТП-15 (2026 г.);
- модернизация Центральной котельной при внедрении автоматизированной системы управления технологическим процессом водогрейных котлов №3, №4, №5, №6, №8, №9 (2024-2025 г.г.);
- модернизация группы сетевых насосов Центральной котельной в летний режим работы (2023 г.).

5.4. Графики совместной работы источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии и котельных

На территории муниципального образования «город Северобайкальск» не предусматривается совместная работа источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии и котельных.

5.5. Меры по выводу из эксплуатации, консервации и демонтажу избыточных источников тепловой энергии, а также источников

тепловой энергии, выработавших нормативный срок службы, в случае если продление срока службы технически невозможно или экономически нецелесообразно

В связи с технической возможностью и экономической целесообразностью в зависимости от варианта перспективного развития в актуализированной схеме теплоснабжения предусмотрены меры по выводу из эксплуатации, консервации и демонтажу источников тепловой энергии. Сценарий развития №1 предусматривает вывод из эксплуатации всех четырех угольных котельных. Вместо угольных котельных в работе будут задействованы две новые блочно-модульные водогрейные газовые котельные с оборудованием. При этом в сценариях развития №1 и №2 выведенная из эксплуатации котельная №10 будет работать в режиме насосной станции, а выведенная из эксплуатации котельная №12 - в режиме ЦТП.

5.6. Меры по переоборудованию котельных в источники тепловой энергии, функционирующие в режиме комбинированной выработки электрической и тепловой энергии

Переоборудование котельных в источники тепловой энергии, функционирующие в режиме комбинированной выработки электрической и тепловой энергии схемой теплоснабжения, не предполагается.

5.7. Меры по переводу котельных, размещенных в существующих и расширяемых зонах действия источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии, в пиковый режим работы, либо по выводу их из эксплуатации

Перевод котельных в пиковый режим работы по отношению к источникам тепловой энергии, функционирующим в режиме комбинированной выработки электрической и тепловой энергии, не предполагается.

5.8. Температурный график отпуска тепловой энергии для каждого источника тепловой энергии или группы источников тепловой энергии в системе теплоснабжения, работающей на общую тепловую сеть, и оценку затрат при необходимости его изменения

Актуализируемой схемой теплоснабжения муниципального образования «город Северобайкальск» предполагается сохранение фактических (текущих) температурных графиков отпуска тепла в тепловые сети, которые соответствуют утвержденным графикам регулирования отпуска тепла в тепловые сети.

При модернизации ЦТП, где не предусмотрено приготовление теплоносителя на нужды ГВС, предусмотреть от этих ЦТП качественное регулирование отпуск тепла с температурным графиком 95/70 °C.

5.9. Предложения по перспективной установленной тепловой мощности каждого источника тепловой энергии с предложениями по сроку ввода в эксплуатацию новых мощностей

По сценарию развития №1 предусмотрено строительство двух новых блочномодульных водогрейных газовых котельных. Одна котельная вводится в эксплуатацию в 2022 г., другая — в 2023-2024 г.г. По сценарию развития №2 в работе планируется использовать угольные котельные. Сценарий развития №2 предусматривает в 2022 году переключение тепловых нагрузок котельной №10 на котельную №6 с переводом выведенной из эксплуатации котельной №10 в режим насосной станции и переключение тепловых нагрузок котельной №12 на Центральную котельную с переводом котельной №12 в режим ЦТП.

5.10. Предложения по вводу новых и реконструкции существующих источников тепловой энергии с использованием возобновляемых источников энергии, а также местных видов топлива

Ввод новых и реконструкция существующих источников тепловой энергии с использованием возобновляемых источников энергии, а также местных видов топлива с точки зрения сложившейся системы теплоснабжения муниципального образования «город Северобайкальск» можно считать не целесообразным.

6. РАЗДЕЛ 6. ПРЕДЛОЖЕНИЯ ПО СТРОИТЕЛЬСТВУ, РЕКОНСТРУКЦИИ И (ИЛИ) МОДЕРНИЗАЦИИ ТЕПЛОВЫХ СЕТЕЙ

Предложения по строительству, реконструкции и (или) модернизации тепловых сетей приведены в Главе 8 «Предложения по строительству, реконструкции и (или) модернизации тепловых сетей» обосновывающих материалов к схеме теплоснабжения муниципального образования «город Северобайкальск».

Решения о необходимости строительства, реконструкции и (или) модернизации тепловых сетей приняты на основании расчетов, выполненных с использованием электронной модели системы теплоснабжения муниципального образования «город Северобайкальск», описание которой приведено в Главе 3 «Электронная модель системы теплоснабжения муниципального образования «город Северобайкальск» обосновывающих материалов к схеме теплоснабжения.

Структура организации проектов по строительству, реконструкции и (или) модернизации тепловых сетей представлена ниже:

- 1) реконструкция, строительство и (или) модернизация тепловых сетей, обеспечивающих перераспределение тепловой нагрузки из зон с дефицитом тепловой мощности в зоны с избытком тепловой мощности (использование существующих резервов);
- 2) строительство тепловых сетей для обеспечения перспективных приростов тепловой нагрузки под жилищную, комплексную или производственную застройку во вновь осваиваемых районах поселения;
- 3) строительство тепловых сетей для обеспечения нормативной надежности теплоснабжения:
- 4) реконструкция и (или) модернизация тепловых сетей с увеличением диаметра трубопроводов для обеспечения перспективных приростов тепловой нагрузки;
- 5) реконструкция и (или) модернизация тепловых сетей, подлежащих замене в связи с исчерпанием эксплуатационного ресурса.

Основными эффектами от реализации этих проектов являются:

- расширение и сохранение теплоснабжения потребителей на уровне современных проектных требований по надежности и безопасности теплоснабжения;
- повышение эффективности передачи тепловой энергии в тепловых сетях.
- 6.1. Предложения по строительству, реконструкции и (или) модернизации тепловых сетей, обеспечивающих перераспределение тепловой нагрузки из зон с дефицитом располагаемой тепловой мощности источников тепловой энергии в зоны с резервом располагаемой тепловой мощности источников тепловой энергии (использование существующих резервов)

В зоне эксплуатационной ответственности теплоснабжающей организации мероприятия по строительству, реконструкции и (или) модернизации тепловых сетей,

обеспечивающих перераспределение тепловой нагрузки из зон с дефицитом располагаемой тепловой мощности источников тепловой энергии в зоны с резервом располагаемой тепловой мощности источников тепловой энергии, не планируются.

6.2. Предложения по строительству, реконструкции и (или) модернизации тепловых сетей для обеспечения перспективных приростов тепловой нагрузки в осваиваемых районах поселения, городского округа, города федерального значения под жилищную, комплексную или производственную застройку

Предложения по строительству, реконструкции и (или) модернизации тепловых сетей для обеспечения перспективных приростов тепловой нагрузки в осваиваемых районах муниципального образования «город Северобайкальск» под жилищную, комплексную или производственную застройку представлены в Табл. 1.10 — Табл. 1.11 Приложения №1 обосновывающих материалов к схеме теплоснабжения муниципального образования «город Северобайкальск».

6.3. Предложения по строительству, реконструкции и (или) модернизации тепловых сетей в целях обеспечения условий, при наличии которых существует возможность поставок тепловой энергии потребителям от различных источников тепловой энергии при сохранении надежности теплоснабжения

В зоне эксплуатационной ответственности теплоснабжающей организации мероприятия по строительство, реконструкции и (или) модернизации тепловых сетей в целях обеспечения условий, при наличии которых существует возможность поставок тепловой энергии потребителям от различных источников тепловой энергии при сохранении надежности теплоснабжения не предусматриваются.

6.4. Предложения по строительству, реконструкции и (или) модернизации тепловых сетей для повышения эффективности функционирования системы теплоснабжения, в том числе за счет перевода котельных в пиковый режим работы или ликвидации котельных

Предложения по строительству, реконструкции и (или) модернизации тепловых сетей для повышения эффективности функционирования системы теплоснабжения при ликвидации котельных представлены в Табл. 1.7 Приложения №1 обосновывающих материалов к схеме теплоснабжения муниципального образования «город Северобайкальск».

6.5. Предложения по строительству, реконструкции и (или) модернизации тепловых сетей для обеспечения нормативной надежности теплоснабжения потребителей

Мероприятия, направленные на повышение надежности теплоснабжения условно можно разделить на две группы:

- мероприятия по строительству, реконструкции и (или) модернизации тепловых сетей с увеличением диаметров, обеспечивающие резервирование;
- мероприятия по реконструкции и (или) модернизации ветхих тепловых сетей.

Предложения по строительству, реконструкции и (или) модернизации тепловых сетей для обеспечения нормативной надежности теплоснабжения потребителей представлены в Табл. 1.9 Приложения №1 обосновывающих материалов к схеме теплоснабжения муниципального образования «город Северобайкальск».

7. РАЗДЕЛ 7. ПРЕДЛОЖЕНИЯ ПО ПЕРЕВОДУ ОТКРЫТЫХ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ (ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ) В ЗАКРЫТЫЕ СИСТЕМЫ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ

В соответствии с п. 8 и 9 ст. 29 Федерального закона от 27.07.2010 г. №190-ФЗ «О теплоснабжении»:

- «С 1 января 2013 года подключение (технологическое присоединение) объектов капитального строительства потребителей к централизованным открытым системам теплоснабжения (горячего водоснабжения) для нужд горячего водоснабжения, осуществляемого путем отбора теплоносителя на нужды горячего водоснабжения, не допускается.
- С 1 января 2022 года использование централизованных открытых систем теплоснабжения (горячего водоснабжения) для нужд горячего водоснабжения, осуществляемого путем отбора теплоносителя на нужды горячего водоснабжения, не допускается».

Согласно письма Минстроя выполнение мероприятий по переводу потребителей ГВС с открытой на закрытую схему теплоснабжения осуществляет муниципальное образование.

В соответствии с Федеральным закон от 30 декабря 2021 г. №438-ФЗ «О внесении изменений в Федеральный закон «О теплоснабжении», вступивший в силу с 1 января 2022 г., для исключения необоснованных расходов, вводится обязательная оценка экономической эффективности мероприятий по переводу открытых систем теплоснабжения (горячего водоснабжения) на закрытые системы горячего водоснабжения.

7.1. Предложения по переводу существующих открытых систем теплоснабжения (горячего водоснабжения) в закрытые системы горячего водоснабжения, для осуществления которого необходимо строительство индивидуальных и (или) центральных тепловых пунктов при наличии у потребителей внутридомовых систем горячего водоснабжения

При актуализации схемы теплоснабжения муниципального образования «город Северобайкальск» предусмотрен перевод потребителей на систему закрытого горячего водоснабжения. Все перспективные потребители подключаются, и будут в дальнейшем подключаться к системе централизованного теплоснабжения по закрытой схеме. В ходе комплексной проработки вопроса перевода на закрытую систему горячего водоснабжения к реализации предлагается следующий вариант — переход на закрытую систему теплоснабжения посредством установки индивидуальных автоматизированных тепловых пунктов (ИАТП) с теплообменниками ГВС при экономической эффективности от перевода.

7.2. Предложения по переводу существующих открытых систем теплоснабжения (горячего водоснабжения) в закрытые системы горячего водоснабжения, для осуществления которого отсутствует

необходимость строительства индивидуальных и (или) центральных тепловых пунктов по причине отсутствия у потребителей внутридомовых систем горячего водоснабжения

У потребителей, не имеющих внутридомовых систем горячего водоснабжения, отпадает необходимость строительства центральных тепловых пунктов при переводе открытых систем теплоснабжения в закрытые системы горячего водоснабжения.

7.3. Оценка экономической эффективности мероприятий по переводу открытых систем теплоснабжения (горячего водоснабжения) на закрытые системы горячего водоснабжения

Оценка экономической эффективности мероприятий по переводу открытых систем теплоснабжения (горячего водоснабжения) на закрытые системы горячего водоснабжения приведена в Главе 9 Обосновывающих материалов схемы теплоснабжения. На основании, представленного расчета можно сделать вывод, что перевод потребителей (ул. Дружбы, 21/3, ул. Космонавтов, 25В, ул. Морских пехотинцев, 5 и по ул. Рабочая, 29) на закрытую систему горячего водоснабжения является экономически не выгодным (не целесообразным) мероприятием.

Перевод вышеуказанных потребителей с открытой системы теплоснабжения (горячего водоснабжения) на закрытую систему горячего водоснабжения возможен при проведении капитального ремонта системы теплоснабжения объекта.

8. РАЗДЕЛ 8. ПЕРСПЕКТИВНЫЕ ТОПЛИВНЫЕ БАЛАНСЫ

8.1. Перспективные топливные балансы для каждого источника тепловой энергии по видам основного, резервного и аварийного топлива на каждом этапе

Основным видом топлива для всех действующих, на момент актуализации схемы теплоснабжения, источников тепловой энергии муниципального образования «город Северобайкальск» является уголь. Резервное и аварийное топливо на существующих источниках тепловой энергии муниципального образования «город Северобайкальск» отсутствуют (не предусмотрены проектом на котельные).

В зависимости от сценария развития перспективные топливные балансы для каждого источника тепловой энергии, отапливающего здания расположенные на территории муниципального образования «город Северобайкальск» по видам основного, резервного и аварийного топлива на каждом этапе представлены в Табл. 8.1.

В соответствии с требованиями п.13.45 СП 89.13330.2012 «Котельные установки» вместимость резервуара хранения резервного топлива колеблется в пределах от трех до десяти дней теплопотребления в самый холодный месяц года и подбирается исходя из условий:

- вид топлива;
- способ доставки.

Табл. 8.1. Перспективные расчетные топливные балансы.

Nº						Этапь	ol .	
п/п	Наименование источника тепловой энергии	Тип топлива	Тип топлива Вид топлива		2023	2024	2025 - 2029	2030 - 2034
	Политови под котори под	основное	бурый уголь, разрез Переясловский, тн	81456,5	82170,6	82884,7	I	-
1	Центральная котельная	резервное (аварийное)	не предусмотрено	_	_	-	ı	-
	Новая блочно-модульная водогрейная газовая	основное	природный газ, м ^з	_	_	_	188437,0	187677,5
	котельная	резервное (аварийное)	дизельное топливо, тн	_	_	ı	2981,4	2971,6
		основное	каменный (бурый) уголь, тн	7494,7	7494,7	7494,7		
2	Котельная №12	резервное (аварийное)	не предусмотрено	_	_		(*)	
		основное	каменный (бурый) уголь, тн	2787,6	_	-	-	-
3	Котельная №6	резервное (аварийное)	не предусмотрено	-	-	-	-	_
٦	Новая блочно-модульная водогрейная газовая	основное	природный газ, м ^з	_	2767,7	2767,7	13504,3	12971,8
	котельная мощностью 7 МВт	резервное (аварийное)	дизельное топливо, тн	_	214,0	214,0	210,0	203,1
1	Котельная №10	основное		4484,4		/**\		
4	иотельная № 10	резервное (аварийное)	бурый уголь, разрез Переясловский, тн	_	(**)			

Примечание: (*) — переключение тепловых нагрузок котельной №12 на Центральную котельную (строительство магистрального трубопровода от тепловой сети Центральной котельной при консервации котельной №12). Вывод из эксплуатации угольных котельных (Центральной котельной и котельной №12) с переводом котельной №12 в режим ЦТП. Строительство новой блочномодульной водогрейной газовой котельной (сценарий развития №1).

(**) – переключение тепловых нагрузок котельной №10 на котельную №6 (строительство тепловых сетей для объединения котельных). Вывод из эксплуатации угольных котельных №6 и №10 с переводом выведенной из эксплуатации котельной №10 в режим насосной станции. Строительство новой блочно-модульной водогрейной газовой котельной мощностью 7 МВт (сценарий развития №1).

8.2. Потребляемые источником тепловой энергии виды топлива, включая местные виды топлива, а также используемые возобновляемые источники энергии

На момент актуализации схемы теплоснабжения основным топливом для всех источников теплоснабжения в муниципальном образовании «город Северобайкальск» является уголь. В связи с чем местные виды топлива, в том числе возобновляемые источники энергии, не используются.

8.3. Виды топлива, их доля и значение низшей теплоты сгорания топлива, используемого для производства тепловой энергии по каждой системе теплоснабжения

Основным и единственным видом топлива, на момент актуализации схемы теплоснабжения, используемого для производства тепловой энергии, на централизованных источниках тепловой энергии является уголь. Низшая теплота сгорания угля из предоставленного сертификата качества составляет 4100 ккал/кг. Сертификат качества угля представлен на Рис. 8.1.

660075, Россия, Красноярск, ул. Маерчака, д.34а Тел. (391) 252-54-42 Факс (391) 252-54-43 Е-mail: <u>kku@kku.ru</u> ОКПО 04536157 ОГРН 1022401786373 ИНН/КПП 2460001984/246750001

СЕРТИФИКАТ

ПОКАЗАТЕЛЕЙ КАЧЕСТВА УГОЛЬНОЙ ПРОДУКЦИИ С УКАЗАНИЕМ МАРКИ, ГРУППЫ, КЛАССА КРУПНОСТИ 3 Б Р (0 — 300 мм)

ОАО «Красноярсккрайуголь» филиал «Разрез Переясловский»

Выпускается по ТУ 0325-004-04536157 - 2009

Наименование показателя	Обозначение	Величина
. Марка, группа, класс крупности угля	36 P	*
. Размер куска, мм		0 - 300
Массовая доля общей влаги на рабочее остояние, %	W,*	28,0-30,0
. Зола на сухое состояние, %	Aª	8,0 - 10,0
Выход летучих вешеств на сухое беззопьное состояние, %	V ^{dsf}	45,0 - 48,0
. Содержание серы на сухое состояние, %	S, a	0,3 - 0,5
Высшая теплота сгорания на сухое еззольное состояние, ккил/кг	Q, def	7100 - 7250
 Низшая теплота сгорания на рабочее остояние, ккап/кт 	Q,'	4100-4300
), Массовая доля хлоря на сухое остояние, %	CI*	0,0032
0. Массовая доля мышьяка на сухое остояние, %	As d	0,90025
1. Содержание общего углерода, %	Cast	72,5 -74,0
2. Содержание водорода, %	H ^{daf}	4,9-5,0
3. Содержание взота, %	Near	0,90 - 0,93
 Температура плавления зольного статка (п/восстан. атм.), ⁰С Начальной деформации Полушария Текучести Химический состав зольного остатка (на 	t _A t _B t _C бессульфатную мас	1170-1200 1180-1220 1220-1240 cy), %
Эксид кремния	SiO ₂	56,9
Эксид алюминия	Al ₂ O ₅	7,8
Эксил железа	Fe ₂ O ₃	15,9
жемд кальция	CaO	14,3
женд натрия	Na ₂ O	0,2
оксил калия	K ₂ O	0,2
Оксид магния	MgO	2,4
OKCHA TUTAHA	TiO ₂	0,3

Зам. генерального директоро по до подражения к

Н.А. Тимофеева

Рис. 8.1. Сертификат качества угля

8.4. Преобладающий в поселении, городском округе вид топлива, определяемый по совокупности всех систем теплоснабжения, находящихся в соответствующем поселении, городском округе

На момент актуализации схемы теплоснабжения преобладающим видом топлива в муниципальном образовании «город Северобайкальск» является уголь.

8.5. Приоритетное направление развития топливного баланса поселения, городского округа

В связи со строительством котельных на СПГ в Республики Бурятия приоритетным направлением развития топливного баланса в муниципальном образовании «город Северобайкальск» планируется осуществлять в соответствии со сценарием развития №1.

- 9. РАЗДЕЛ 9. ИНВЕСТИЦИИ В СТРОИТЕЛЬСТВО, РЕКОНСТРУКЦИЮ, ТЕХНИЧЕСКОЕ ПЕРЕВООРУЖЕНИЕ И (ИЛИ) МОДЕРНИЗАЦИЮ
- 9.1. Предложения по величине необходимых инвестиций в строительство, реконструкцию, техническое перевооружение и (или) модернизацию источников тепловой энергии на каждом этапе

Предложения по величине необходимых инвестиций в строительство, реконструкцию, техническое перевооружение и (или) модернизацию источников тепловой энергии на каждом этапе представлены в Главе 12 «Обоснование инвестиций в строительство, реконструкцию, техническое перевооружение и (или) модернизацию».

9.2. Предложения по величине необходимых инвестиций в строительство, реконструкцию, техническое перевооружение и (или) модернизацию тепловых сетей, насосных станций и тепловых пунктов на каждом этапе

Предложения по величине необходимых инвестиций в строительство, реконструкцию, техническое перевооружение и (или) модернизацию тепловых сетей и насосных станций на каждом этапе представлены в Главе 12 «Обоснование инвестиций в строительство, реконструкцию, техническое перевооружение и (или) модернизацию».

9.3. Предложения по величине инвестиций в строительство, реконструкцию, техническое перевооружение и (или) модернизацию в связи с изменениями температурного графика и гидравлического режима работы системы теплоснабжения на каждом этапе

Строительство, реконструкция, техническое перевооружение и (или) модернизация в связи с изменениями температурного графика в актуализируемой схеме теплоснабжения не планируется. Строительство, реконструкция, техническое перевооружение и (или) модернизация в связи с изменениями гидравлического режима работы системы теплоснабжения связана с объединением котельных в зависимости от сценария развития системы теплоснабжения муниципального образования «город Северобайкальск».

9.4. Предложения по величине необходимых инвестиций для перевода открытой системы теплоснабжения (горячего водоснабжения) в закрытую систему горячего водоснабжения на каждом этапе

Предложения по величине необходимых инвестиций для перевода открытой системы теплоснабжения (горячего водоснабжения) в закрытую систему горячего водоснабжения на каждом этаже представлены в Табл.1.5 Приложения №1 обосновывающих материалов к схеме теплоснабжения.

9.5. Оценка эффективности инвестиций по отдельным предложениям

Расчеты ценовых последствий для потребителей при реализации программ строительства, реконструкции, технического перевооружения и (или) модернизации систем теплоснабжения выполнены с учетом:

- прогнозов индексов предельного роста цен и тарифов на топливо и энергию Минэкономразвития РФ до 2034 г.;
- коэффициента распределения финансовых затрат по годам.

Для включения в инвестиционную надбавку к тарифу предлагаются следующие мероприятия:

- все мероприятия по строительству, реконструкции, капитальному ремонту и (или) модернизации источников тепловой энергии;
- предложение по реконструкции тепловых сетей для повышения надежности теплоснабжения, подлежащих замене в связи с исчерпанием эксплуатационного ресурса.
- предложение по строительству и реконструкции ЦТП.

Мероприятия по строительству тепловых сетей для обеспечения перспективных приростов тепловой нагрузки под жилищную, комплексную или производственную застройку во вновь осваиваемых районах муниципального образования «город Северобайкальск» и предложения по реконструкции тепловых сетей с увеличением диаметра трубопроводов для обеспечения перспективных приростов тепловой нагрузки должны быть реализованы за счет тарифа на подключения.

Для смягчения денежной нагрузки на жителей, необходимо привлекать дополнительные источниками финансирования:

- областной бюджет, в рамках областных программ по модернизации в сфере энергетики;
- государственно-частное партнерство;
- федеральный бюджет, в рамках федеральных целевых программ в сфере теплоэнергетики.

Оценка эффективности инвестиций по отдельным предложениям представлена в Главе 12 «Обоснование инвестиций в строительство, реконструкцию, техническое перевооружение и (или) модернизацию» обосновывающих материалов к схеме теплоснабжения муниципального образования «город Северобайкальск».

9.6. Величина фактически осуществленных инвестиций в строительство, реконструкцию, техническое перевооружение и (или) модернизацию объектов теплоснабжения за базовый период и базовый период актуализации

Информация по величине фактически осуществленных инвестиций в строительство, реконструкцию, техническое перевооружение и (или) модернизацию объектов теплоснабжения муниципального образования «город Северобайкальск» не предоставлена.

10. РАЗДЕЛ 10. РЕШЕНИЕ О ПРИСВОЕНИИ СТАТУСА ЕДИНОЙ ТЕПЛОСНАБЖАЮЩЕЙ ОРГАНИЗАЦИИ (ОРГАНИЗАЦИЯМ)

10.1. Решение о присвоении статуса единой теплоснабжающей организации (организациям)

Решение по установлению единой теплоснабжающей организации осуществляется на основании критериев определения единой теплоснабжающей организации, установленных в правилах организации теплоснабжения, утверждаемых Правительством Российской Федерации.

В соответствии со статьей 2 пунктом 28 Федерального закона 190 «О теплоснабжении»: «Единая теплоснабжающая организация в системе теплоснабжения (далее - единая теплоснабжающая организация) - теплоснабжающая организация, которая определяется в схеме теплоснабжения федеральным органом исполнительной власти, уполномоченным Правительством Российской Федерации на реализацию государственной политики в сфере теплоснабжения (далее - федеральный орган исполнительной власти, уполномоченный на реализацию государственной политики в сфере теплоснабжения), или органом местного самоуправления на основании критериев и в порядке, которые установлены правилами организации теплоснабжения, утвержденными Правительством Российской Федерации».

В соответствии со статьей 6 пунктом 6 Федерального закона 190 «О теплоснабжении»: «К полномочиям органов местного самоуправления поселений, городских округов по организации теплоснабжения на соответствующих территориях относится утверждение схем теплоснабжения поселений, городских округов с численностью населения менее пятисот тысяч человек, в том числе определение единой теплоснабжающей организации».

Предложения по установлению единой теплоснабжающей организации осуществляются на основании критериев определения единой теплоснабжающей организации, установленных в Правилах организации теплоснабжения, утвержденных постановлением Правительства Российской Федерации от 8 августа 2012 г. № 808 (далее Правила).

В настоящее время причиной потери статуса единой теплоснабжающей организации – АО «Теплоэнерго» является постановление администрации муниципального образования «город Северобайкальск» от 05 мая 2022 года № 402 о снятии статуса единой теплоснабжающей организации с АО «Теплоэнерго» с 05 мая 2022 г.

На основании постановления администрации муниципального образования «город Северобайкальск» от 05 мая 2022 года № 403 статус единой теплоснабжающей организации присвоен МП «БВК» с 05 мая 2022 года.

10.2. Реестр зон деятельности единой теплоснабжающей организации (организаций)

Реестр зон деятельности единой теплоснабжающей организации приведен в Табл. 10.1.

Табл. 10.1. Реестр зон деятельности единой теплоснабжающей организации

Nº ⊓/⊓	Наименование ЕТО	Наименование источника					
	до 05 мая 2022 г.						
1	Акционерное общество «Теплоэнерго» (*)	Центральная котельная					
2	Акционерное общество «Теплоэнерго» (*)	Котельная №10					
3	Акционерное общество «Теплоэнерго» (*)	Котельная №6					
4	4 Акционерное общество «Теплоэнерго» (*) Котельная №12						
	с 05 мая 2022 г.						
1	Муниципальное предприятие «БВК» (*)	Центральная котельная					
2	Муниципальное предприятие «БВК» (*)	Котельная №10					
3	3 Муниципальное предприятие «БВК» (*) Котельная №6						
4	Муниципальное предприятие «БВК» (*)	Котельная №12					

Примечание: (*) - на основании Постановления администрации муниципального образования «город Северобайкальск» от 05 мая 2022 года № 402 о снятии статуса единой теплоснабжающей организации с АО «Теплоэнерго» и Постановления администрации муниципального образования «город Северобайкальск» от 05 мая 2022 года № 403 о присвоении статуса единой теплоснабжающей организации МП «БВК» с 05 мая 2022 года.

10.3. Основания, в том числе критерии, в соответствии с которыми теплоснабжающая организация определена единой теплоснабжающей организацией

Статус единой теплоснабжающей организации присваивается органом местного самоуправления или федеральным органом исполнительной власти (далее – уполномоченные органы) при утверждении схемы теплоснабжения поселения, городского округа, а в случае смены единой теплоснабжающей организации – при актуализации схемы теплоснабжения.

В проекте схемы теплоснабжения должны быть определены границы зон деятельности единой теплоснабжающей организации (организаций). Границы зоны (зон) деятельности единой теплоснабжающей организации (организаций) определяются границами системы теплоснабжения, в отношении которой присваивается соответствующий статус.

В случае если на территории поселения, городского округа существуют несколько систем теплоснабжения, уполномоченные органы вправе:

- определить единую теплоснабжающую организацию (организации) в каждой из систем теплоснабжения, расположенных в границах поселения, городского округа;
- определить на несколько систем теплоснабжения единую теплоснабжающую организацию, если такая организация владеет на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми

сетями в каждой из систем теплоснабжения, входящей в зону её деятельности.

Для присвоения статуса единой теплоснабжающей организации впервые на территории поселения, городского округа, лица, владеющие на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями на территории поселения, городского округа вправе подать в течение одного месяца с даты размещения на сайте поселения, городского округа, города федерального значения проекта схемы теплоснабжения в орган местного самоуправления заявки на присвоение статуса единой теплоснабжающей организации с указанием зоны деятельности, в которой указанные лица планируют исполнять функции единой теплоснабжающей организации. Орган местного самоуправления обязан разместить сведения о принятых заявках на сайте поселения, городского округа.

В случае если в отношении одной зоны деятельности единой теплоснабжающей организации подана одна заявка от лица, владеющего на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями в соответствующей системе теплоснабжения, то статус единой теплоснабжающей организации присваивается указанному лицу. В случае, если в отношении одной зоны деятельности единой теплоснабжающей организации подано несколько заявок от лиц, владеющих на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями в соответствующей системе теплоснабжения, орган местного самоуправления присваивает статус единой теплоснабжающей организации в соответствии с критериями настоящих Правил.

Критериями определения единой теплоснабжающей организации являются:

- владение на праве собственности или ином законном основании источниками тепловой энергии с наибольшей рабочей тепловой мощностью и (или) тепловыми сетями с наибольшей емкостью в границах зоны деятельности единой теплоснабжающей организации;
- размер собственного капитала;
- способность в лучшей мере обеспечить надежность теплоснабжения в соответствующей системе теплоснабжения.

В случае если в отношении одной зоны деятельности единой теплоснабжающей организации подано более одной заявки на присвоение соответствующего статуса от лиц, соответствующих критериям, установленным настоящими Правилами, статус единой теплоснабжающей организации присваивается организации, способной в лучшей мере обеспечить надежность теплоснабжения в соответствующей системе теплоснабжения.

Способность обеспечить надежность теплоснабжения определяется наличием у организации технических возможностей и квалифицированного персонала по наладке, мониторингу, диспетчеризации, переключениям и оперативному управлению гидравлическими режимами, и обосновывается в схеме теплоснабжения.

В случае если в отношении зоны деятельности единой теплоснабжающей организации не подано ни одной заявки на присвоение соответствующего статуса, статус единой теплоснабжающей организации присваивается организации, владеющей в соответствующей зоне деятельности источниками тепловой энергии и (или) тепловыми сетями, и соответствующей критериям настоящих Правил.

Единая теплоснабжающая организация при осуществлении своей деятельности обязана:

- заключать и исполнять договоры теплоснабжения с любыми обратившимися к ней потребителями тепловой энергии, теплопотребляющие установки которых находятся в данной системе теплоснабжения при условии соблюдения указанными потребителями выданных им в соответствии с законодательством о градостроительной деятельности технических условий подключения к тепловым сетям;
- заключать и исполнять договоры поставки тепловой энергии (мощности) и (или) теплоносителя в отношении объема тепловой нагрузки, распределенной в соответствии со схемой теплоснабжения;
- заключать и исполнять договоры оказания услуг по передаче тепловой энергии, теплоносителя в объеме, необходимом для обеспечения теплоснабжения потребителей тепловой энергии с учетом потерь тепловой энергии, теплоносителя при их передаче.

Организация может утратить статус единой теплоснабжающей организации в следующих случаях:

- систематическое (три и более раза в течение 12 месяцев) неисполнение или ненадлежащее исполнение обязательств, предусмотренных условиями договоров. Факт неисполнения или ненадлежащего исполнения обязательств должен быть подтвержден вступившими в законную силу решениями федерального антимонопольного органа, и (или) его территориальных органов, и (или) судов;
- принятие в установленном порядке решения о реорганизации (за исключением реорганизации в форме присоединения, когда к организации, имеющей статус единой теплоснабжающей организации, присоединяются другие реорганизованные организации, а также реорганизации в форме преобразования) или ликвидации организации, имеющей статус единой теплоснабжающей организации;
- принятие арбитражным судом решения о признании организации, имеющей статус единой теплоснабжающей организации, банкротом;
- прекращение права собственности или владения источниками тепловой энергии с наибольшей рабочей тепловой мощностью и (или) тепловыми сетями с наибольшей емкостью в границах зоны деятельности единой теплоснабжающей организации по основаниям, предусмотренным законодательством Российской Федерации;
- несоответствие организации, имеющей статус единой теплоснабжающей организации, критериям, связанным с размером собственного капитала, а также способностью в лучшей мере обеспечить надежность теплоснабжения в соответствующей системе теплоснабжения;
- подача организацией заявления о прекращении осуществления функций единой теплоснабжающей организации.

Границы зоны деятельности единой теплоснабжающей организации могут быть изменены в следующих случаях:

- подключение к системе теплоснабжения новых теплопотребляющих установок, источников тепловой энергии или тепловых сетей, или их отключение от системы теплоснабжения;
- технологическое объединение или разделение систем теплоснабжения.

Сведения об изменении границ зон деятельности единой теплоснабжающей организации, а также сведения о присвоении другой организации статуса единой теплоснабжающей организации подлежат внесению в схему теплоснабжения при ее актуализации.

10.4. Информация о поданных теплоснабжающими организациями заявках на присвоение статуса единой теплоснабжающей организации

На момент актуализации схемы теплоснабжения муниципального образования «город Северобайкальск» заявок на присвоение статуса ЕТО от других теплоснабжающих организаций не поступало.

10.5. Реестр систем теплоснабжения, содержащий перечень теплоснабжающих организаций, действующих в каждой системе теплоснабжения, расположенных в границах муниципального образования «город Северобайкальск»

Реестр систем теплоснабжения, содержащий перечень теплоснабжающих организаций, действующих в каждой системе теплоснабжения, расположенных в границах муниципального образования «город Северобайкальск» приведен в Табл. 10.2.

Табл. 10.2. Реестр систем теплоснабжения, содержащий перечень теплоснабжающих организаций, действующих в каждой системе теплоснабжения

№ п/п	Наименование организации	Наименование источника					
	до 05 мая 2022 г.						
1	Акционерное общество «Теплоэнерго» (*)	Центральная котельная					
2	Акционерное общество «Теплоэнерго» (*)	Котельная №10					
3	Акционерное общество «Теплоэнерго» (*)	Котельная №6					
4	Акционерное общество «Теплоэнерго» (*)	Котельная №12					
	с 05 мая 2022 г.						
1	Муниципальное предприятие «БВК» (*)	Центральная котельная					
2	Муниципальное предприятие «БВК» (*)	Котельная №10					
3	3 Муниципальное предприятие «БВК» (*) Котельная						
4	4 Муниципальное предприятие «БВК» (*) Котельная №12						

Примечание: (*) - на основании Постановления администрации муниципального образования «город Северобайкальск» от 05 мая 2022 года № 402 о снятии статуса единой теплоснабжающей организации с АО «Теплоэнерго» и Постановления администрации муниципального образования «город Северобайкальск» от 05 мая 2022 года № 403 о присвоении статуса единой теплоснабжающей организации МП «БВК» с 05 мая 2022 года.

11. РАЗДЕЛ 11. РЕШЕНИЯ О РАСПРЕДЕЛЕНИИ ТЕПЛОВОЙ НАГРУЗКИ МЕЖДУ ИСТОЧНИКАМИ ТЕПЛОВОЙ ЭНЕРГИИ

В актуализируемой схеме теплоснабжения перераспределение тепловой нагрузки между источниками тепловой энергии в муниципальном образовании «город Северобайкальск» связана с объединением котельных в зависимости от сценария развития системы теплоснабжения муниципального образования «город Северобайкальск».

12. РАЗДЕЛ 12. РЕШЕНИЯ ПО БЕСХОЗЯЙНЫМ ТЕПЛОВЫМ СЕТЯМ

В соответствии со статьей 15, пункт 6 Федерального закона от 27 июля 2010 года № 190-Ф3: «В случае выявления бесхозяйных тепловых сетей (тепловых сетей, не имеющих эксплуатирующей организации) орган местного самоуправления поселения или городского округа до признания права собственности на указанные бесхозяйные тепловые сети в течение тридцати дней с даты их выявления обязан определить теплосетевую организацию, тепловые сети которой непосредственно соединены с указанными бесхозяйными тепловыми сетями, или единую теплоснабжающую организацию в системе теплоснабжения, в которую входят указанные бесхозяйные тепловые сети и которая осуществляет содержание и обслуживание указанных бесхозяйных тепловых сетей. Орган регулирования обязан включить затраты на содержание и обслуживание бесхозяйных тепловых сетей в тарифы соответствующей организации на следующий период регулирования».

Информация по бесхозяйным тепловым сетям представлена в Табл. 12.1.

Правом собственности на данные участки рекомендуется наделить администрацию. В качестве эксплуатирующей организации рекомендуется определить организацию, выполняющую в рассматриваемой системе теплоснабжения функции единой теплоснабжающей организации.

Табл. 12.1. Перечень бесхозяйных сетей

№ п/п.	Адрес участка тепловой сети	№ тепловой камеры	Протяженность (в 2-х трубном исчислении), м.	Источник тепловой энергии
1	проспект 60 лет СССР 2	76	76	Центральная котельная
2	проспект 60 лет СССР 4	77	72,5	Центральная котельная
3	проспект 60 лет СССР 8	78	57,5	Центральная котельная
4	проспект 60 лет СССР 10	79	67,5	Центральная котельная
5	проспект 60 лет СССР 14	93	75	Центральная котельная
6	проспект 60 лет СССР 16	94	61	Центральная котельная
7	проспект 60 лет СССР 20	16	24	Центральная котельная
8	проспект 60 лет СССР 26	107	95	Центральная котельная
9	проспект 60 лет СССР 28	107	17	Центральная котельная
10	проспект 60 лет СССР 30	107	63	Центральная котельная
11	проспект 60 лет СССР 32	106	18	Центральная котельная
12	проспект 60 лет СССР 42	26	10	Центральная котельная
13	ул. Полиграфистов 1	75	5	Центральная котельная
14	ул. Полиграфистов 2	55/2	35	Центральная котельная
15	ул. Полиграфистов 3	74	56,5	Центральная котельная
16	ул. Полиграфистов 4	55/2	16,5	Центральная котельная
17	ул. Полиграфистов 5	81	92	Центральная котельная
18	ул. Полиграфистов 6	55/5	45,5	Центральная котельная
19	ул. Полиграфистов 7	80	86	Центральная котельная
20	ул. Полиграфистов 9	50	37,5	Центральная котельная

№ п/п.	Адрес участка тепловой сети	№ тепловой камеры	Протяженность (в 2-х трубном исчислении), м.	Источник тепловой энергии
21	ул. Полиграфистов 9а	51/1	19,5	Центральная котельная
22	ул. Полиграфистов 15	49,49/1,49/2	182	Центральная котельная
23	ул. Студенческая 4	55/8	10	Центральная котельная
24	ул. Студенческая 6	55/6	10	Центральная котельная
25	ул. Студенческая 8	55/3	13,5	Центральная котельная
26	ул. Студенческая 12	69	40	Центральная котельная
27	пр. Ленинградский 1	100	10	Центральная котельная
28	пр. Ленинградский 2	86	14	Центральная котельная
29	пр. Ленинградский 3	112	10	Центральная котельная
30	пр. Ленинградский 4	84	8,5	Центральная котельная
31	пр. Ленинградский 5	123,124	20	Центральная котельная
32	пр. Ленинградский 6	98,99	14	Центральная котельная
33	пр. Ленинградский 6а	97	22,5	Центральная котельная
34	пр. Ленинградский 9	115	33,5	Центральная котельная
35	пр. Ленинградский 19	144	20,5	Центральная котельная
36	ул. Парковая 1	106	15,5	Центральная котельная
37	ул. Парковая 3	101	7,5	Центральная котельная
38	ул. Парковая 4	121	6	Центральная котельная
39	ул. Парковая 5	109	60,5	Центральная котельная
40	ул. Парковая 6	119	11,5	Центральная котельная
41	ул. Парковая 7	109	6	Центральная котельная
42	ул. Парковая 9	114	16	Центральная котельная
43	ул. Парковая 11	114	182	Центральная котельная
44	ул. Парковая 13	105	66,5	Центральная котельная
45	ул. Парковая 17	105	7	Центральная котельная
46	пер. Пролетарский 5	55/9	12,5	Центральная котельная
47	пер. Пролетарский 9	55/7	10,5	Центральная котельная
48	ул. Рабочая, ТОС «Наш Дворик»	ТК-2а магистральных тепловых сетей ЦТП-8	486	ЦТП-8 (котельная №12)
49	7 микрорайон 1,1а линии	ТК-16 магистральных тепловых сетей ЦТП-3	417,5	ЦТП-3 (Центральная котельная)
50	ул. 25 лет БАМа	ТК-26 магистральных тепловых сетей ЦТП-5	194	ЦТП-5 (Центральная котельная)

- 13. РАЗДЕЛ 13. СИНХРОНИЗАЦИЯ СХЕМЫ ТЕПЛОСНАБЖЕНИЯ СО СХЕМОЙ ГАЗОСНАБЖЕНИЯ И ГАЗИФИКАЦИИ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ «ГОРОД СЕВЕРОБАЙКАЛЬСК», СХЕМОЙ И ПРОГРАММОЙ РАЗВИТИЯ ЭЛЕКТРОЭНЕРГЕТИКИ, А ТАКЖЕ СО СХЕМОЙ ВОДОСНАБЖЕНИЯ И ВОДООТВЕДЕНИЯ
- 13.1. Описание решений (на основе утвержденной региональной (межрегиональной) программы газификации жилищно-коммунального хозяйства, промышленных и иных организаций) о развитии соответствующей системы газоснабжения в части обеспечения топливом источников тепловой энергии

В соответствии с Соглашение между Правительством Республики Бурятия и Газпром СПГ технологии в муниципальном образовании «город Северобайкальск» запланирован в межотопительный период 2022 года перевести на газ две небольшие котельные (котельная №6 и №10) в микрорайоне Заречный города Северобайкальска, а в 2023-2024 г.г. - Центральную котельную города и котельную №12. В связи с чем развитие системы газоснабжения направлено на обеспечение топливом новых блочно-модульных водогрейных газовых источников тепловой энергии.

13.2. Описание проблем организации газоснабжения источников тепловой энергии

В настоящее время в муниципальном образовании «город Северобайкальск» организации газоснабжения источников тепловой энергии не осуществляется в виду использования на централизованных источниках тепловой энергии в качестве топлива - уголь. Для организации газоснабжения перспективных источников тепловой энергии принята программа развития газификации Республики Бурятии. Специалистами по газификации предлагаются методики автономной газификации территории с помощью доставки сжиженного природного газа до переоборудованных котельных. На сегодняшний день сжиженный природный газ производится в Якутии, планируется строительство завода по сжижению рядом с границей Бурятии на севере Иркутской области. В качестве сырья использоваться будет газ с месторождений Иркутской нефтяной компании.

13.3. Предложения по корректировке, утвержденной (разработке) региональной (межрегиональной) программы газификации жилищнокоммунального хозяйства, промышленных и иных организаций для обеспечения согласованности такой программы с указанными в схеме теплоснабжения решениями о развитии источников тепловой энергии и систем теплоснабжения

Программы газификации жилищно-коммунального хозяйства, промышленных и иных организаций для муниципального образования «город Северобайкальск» должны проводится в соответствии с программой развития газификации Республики Бурятии в части развития источников тепловой энергии и систем теплоснабжения муниципального образования «город Северобайкальск».

13.4. Описание решений (вырабатываемых положений учетом утвержденной схемы и программы развития Единой энергетической системы России) о строительстве, реконструкции, техническом перевооружении, выводе из эксплуатации источников тепловой энергии и генерирующих объектов, включая входящее в их состав функционирующих оборудование, В режиме комбинированной выработки электрической тепловой энергии, части балансов тепловой перспективных мощности схемах В теплоснабжения

Планов (вырабатываемых с учетом положений утвержденной схемы и программы развития Единой энергетической системы России) по строительству, реконструкции, техническому перевооружению, выводу из эксплуатации источников тепловой энергии и генерирующих объектов, функционирующих в режиме комбинированной выработки электрической и тепловой энергии, на территории муниципального образования «город Северобайкальск» не предусмотрено.

13.5. Предложения объектов, ПО строительству генерирующих функционирующих выработки комбинированной режиме электрической тепловой энергии, указанных теплоснабжения, для их учета при разработке схемы и программы перспективного развития электроэнергетики субъекта Российской Федерации, схемы и программы развития Единой энергетической системы России, содержащие в том числе описание участия указанных объектов в перспективных балансах тепловой мощности и энергии

Мероприятий по строительству генерирующих объектов, функционирующих в режиме комбинированной выработки электрической и тепловой энергии, указанных в данной схеме теплоснабжения не предполагается.

13.6. Описание решений (вырабатываемых с учетом положений утвержденной схемы водоснабжения и водоотведения Муниципального образования «город Северобайкальск») о развитии соответствующей системы водоснабжения в части, относящейся к системам теплоснабжения

Согласно утвержденной схеме водоснабжения и водоотведения муниципального образования «город Северобайкальск» развитие соответствующей системы водоснабжения в части, относящейся к системам теплоснабжения, предусматривает реализацию в полном объеме положений ст. 29 Федерального закона от 27 июля 2010 г. № 190-ФЗ «О теплоснабжении». В соответствии, с которым все вновь построенные объекты муниципального образования будут присоединяться по закрытой схеме ГВС. Таким образом, подготовка горячей воды будет происходить не на источниках теплоснабжения, а непосредственно в теплообменниках, устанавливаемых в ИТП у потребителей и/или на ЦТП.

13.7. Предложения по корректировке, утвержденной (разработке) схемы водоснабжения и водоотведения муниципального образования «город Северобайкальск» для обеспечения согласованности такой схемы и указанных в схеме теплоснабжения решений о развитии источников тепловой энергии и систем теплоснабжения

Корректировка схемы водоснабжения и водоотведения муниципального образования «город Северобайкальск» в разрезе развития источников тепловой энергии и систем теплоснабжения не требуется.

14. РАЗДЕЛ 14. ИНДИКАТОРЫ РАЗВИТИЯ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ «ГОРОД СЕВЕРОБАЙКАЛЬСК»

14.1. Количество прекращений подачи тепловой энергии, теплоносителя в результате технологических нарушений на тепловых сетях

Информация о количестве прекращений подачи тепловой энергии, теплоносителя в результате технологических нарушений на тепловых сетях приведена в Табл. 14.1.

Табл. 14.1. Количество прекращений подачи тепловой энергии, теплоносителя в результате технологических нарушений на тепловых сетях на 1 км тепловых сетей

№ п/п	Наименование организации	Ед. измерения	2022	2023	2024	2025 - 2029	2030 - 2034
1	АО «Теплоэнерго» (*)	на 1 км	0,024	-	1	-	-
2	МП «БВК» (*)	тепловых сетей	_	0,016	0,016	0,016	0,016

Примечание: (*) - на основании Постановления администрации муниципального образования «город Северобайкальск» от 05 мая 2022 года № 402 о снятии статуса единой теплоснабжающей организации с АО «Теплоэнерго» и Постановления администрации муниципального образования «город Северобайкальск» от 05 мая 2022 года № 403 о присвоении статуса единой теплоснабжающей организации МП «БВК» с 05 мая 2022 года.

14.2. Количество прекращений подачи тепловой энергии, теплоносителя в результате технологических нарушений на источниках тепловой энергии

Информация о количестве прекращений подачи тепловой энергии, теплоносителя в результате технологических нарушений на источниках тепловой энергии приведена в Табл. 14.2.

Табл. 14.2. Количество прекращений подачи тепловой энергии, теплоносителя в результате технологических нарушений на источниках тепловой энергии на 1 Гкал/час установленной мощности

№ п/п	Наименование организации	Ед. измерения	2022	2023	2024	2025 - 2029	2030 - 2034
1	АО «Теплоэнерго» (*)	на 1 Гкал/час	0,006	-	-	-	-
2	МП «БВК» (*)	установленнои мощности	-	0,006	0,006	0,006	0,006

Примечание: (*) - на основании Постановления администрации муниципального образования «город Северобайкальск» от 05 мая 2022 года № 402 о снятии статуса единой теплоснабжающей организации с АО «Теплоэнерго» и Постановления администрации муниципального образования «город Северобайкальск» от 05 мая 2022 года № 403 о присвоении статуса единой теплоснабжающей организации МП «БВК» с 05 мая 2022 года.

14.3. Удельный расход условного топлива на единицу тепловой энергии, отпускаемой с коллекторов источников тепловой энергии (отдельно для тепловых электрических станций и котельных)

Удельный расход условного топлива на единицу тепловой энергии, отпускаемой с коллекторов угольных источников тепловой энергии приведен в Табл. 14.3.

Табл. 14.3. Удельный расход топлива на производство единицы тепловой энергии, отпускаемой с коллекторов угольных источников тепловой энергии

№ п/п	Наименование организации	Ед. измерения	2022	2023	2024	2025 - 2029	2030 - 2034
1	АО «Теплоэнерго» (*)	кг.у.т/Гкал	206,56	-	ı	ı	-
2	МП «БВК» (*)		-	197,75	197,75	197,75	197,75

Примечание: (*) - на основании Постановления администрации муниципального образования «город Северобайкальск» от 05 мая 2022 года № 402 о снятии статуса единой теплоснабжающей организации с АО «Теплоэнерго» и Постановления администрации муниципального образования «город Северобайкальск» от 05 мая 2022 года № 403 о присвоении статуса единой теплоснабжающей организации МП «БВК» с 05 мая 2022 года.

Расчетный удельный расход условного топлива на единицу тепловой энергии, отпускаемой с коллекторов источников тепловой энергии на СПГ приведен в Табл. 14.4.

Табл. 14.4. Расчетный удельный расход условного топлива на единицу тепловой энергии, отпускаемой с коллекторов источников тепловой энергии на СПГ

№ п/п	Наименование котельной	Ед. измерения	2022	2023	2024	2025 - 2029	2030 - 2034
	Центральная котельная		196,857	196,857	196,857	-	-
1	Новая блочно-модульная водогрейная газовая котельная	кг.у.т/Гкал	_	-	ı	166,617	166,617
2	Котельная №12	кг.у.т/Гкал	202,826	202,826	202,826	(*)	
	Котельная №6		217,026	-	1	-	_
3	Новая блочно-модульная водогрейная газовая котельная мощностью 7МВт	кг.у.т/Гкал	_	162,338	162,338	162,338	162,338
4	Котельная №10	кг.у.т/Гкал	205,846	(**)			

Примечание: (*) — переключение тепловых нагрузок котельной №12 на Центральную котельную (строительство магистрального трубопровода от тепловой сети Центральной котельной при консервации котельной №12). Вывод из эксплуатации угольных котельных (Центральной котельной и котельной №12) с переводом котельной №12 в режим ЦТП. Строительство новой блочно-модульной водогрейной газовой котельной (сценарий развития №1).

(**) – переключение тепловых нагрузок котельной №10 на котельную №6 (строительство тепловых сетей для объединения котельных). Вывод из эксплуатации угольных котельных №6 и №10 с переводом выведенной из эксплуатации котельной №10 в режим насосной

станции. Строительство новой блочно-модульной водогрейной газовой котельной мощностью 7 МВт (сценарий развития №1).

14.4. Отношение величины технологических потерь тепловой энергии, теплоносителя к материальной характеристике тепловой сети

Отношение величины технологических потерь тепловой энергии, теплоносителя к материальной характеристике тепловой сети приведено в Табл. 14.5 (при угольных котельных).

Табл. 14.5. Отношение величины технологических потерь тепловой энергии, теплоносителя к материальной характеристике тепловой сети (угольные котельные)

№ п/п	Наименование организации	Ед. измерения	2022	2023	2024	2025 - 2029	2030 - 2034
1	АО «Теплоэнерго» (*)	F.,, = //, , 2\	3,37	-	ı	-	-
2	МП «БВК» (*)	Гкал/(м²)	ı	2,81	2,81	2,81	2,81

Примечание: (*) - на основании Постановления администрации муниципального образования «город Северобайкальск» от 05 мая 2022 года № 402 о снятии статуса единой теплоснабжающей организации с АО «Теплоэнерго» и Постановления администрации муниципального образования «город Северобайкальск» от 05 мая 2022 года № 403 о присвоении статуса единой теплоснабжающей организации МП «БВК» с 05 мая 2022 года.

Отношение величины технологических потерь тепловой энергии, теплоносителя к материальной характеристике тепловой сети приведено в Табл. 14.6 (при котельных на СПГ).

Табл. 14.6. Отношение величины технологических потерь тепловой энергии, теплоносителя к материальной характеристике тепловой сети (котельные на СПГ)

№ п/п	Наименование котельной	Ед. измерения	2022	2023	2024	2025 - 2029	2030 - 2034	
	Центральная котельная		3,486	3,536	3,590	-	-	
1	Новая блочно-модульная водогрейная газовая котельная	Гкал/(м²)	_	_	-	3,634	3,585	
2	Котельная №12	Гкал/(м²)	2,766	2,766	2,766	(*)		
	Котельная №6		2,449	-	_	-	-	
3	Новая блочно-модульная водогрейная газовая котельная мощностью 7 МВт	Гкал/(м²)	_	2,492	2,434	2,180	2,070	
4	Котельная №10	Гкал/(м²)	2,323	(**)				

Примечание: (*) — переключение тепловых нагрузок котельной №12 на Центральную котельную (строительство магистрального трубопровода от тепловой сети Центральной котельной при консервации котельной №12). Вывод из эксплуатации угольных котельных (Центральной котельной и котельной №12) с переводом котельной №12 в режим ЦТП.

Строительство новой блочно-модульной водогрейной газовой котельной (сценарий развития №1).

(**) – переключение тепловых нагрузок котельной №10 на котельную №6 (строительство тепловых сетей для объединения котельных). Вывод из эксплуатации угольных котельных №6 и №10 с переводом выведенной из эксплуатации котельной №10 в режим насосной станции. Строительство новой блочно-модульной водогрейной газовой котельной мощностью 7 МВт (сценарий развития №1).

14.5. Коэффициент использования установленной тепловой мощности

Коэффициенты использования установленной тепловой мощности приведены в Табл. 14.7.

№ п/п	Наименование котельной	Ед. измерения	2022	2023	2024	2025 - 2029	2030 - 2034	
	Центральная котельная		16,811	16,958	17,106	_	_	
1	Новая блочно-модульная водогрейная газовая котельная	%	_	ı	-	30,867	30,742	
2	Котельная №12	%	20,165	20,165	20,165	(*)		
	Котельная №6		13,441	-	-	_	_	
3	Новая блочно-модульная водогрейная газовая котельная мощностью 7 МВт	%	-	37,654	37,654	36,745	35,296	
4	Котельная №10	%	15,905	(**)				

Табл. 14.7. Коэффициент использования установленной тепловой мощности

Примечание: (*) — переключение тепловых нагрузок котельной №12 на Центральную котельную (строительство магистрального трубопровода от тепловой сети Центральной котельной при консервации котельной №12). Вывод из эксплуатации угольных котельных (Центральной котельной и котельной №12) с переводом котельной №12 в режим ЦТП. Строительство новой блочно-модульной водогрейной газовой котельной (сценарий развития №1).

(**) – переключение тепловых нагрузок котельной №10 на котельную №6 (строительство тепловых сетей для объединения котельных). Вывод из эксплуатации угольных котельных №6 и №10 с переводом выведенной из эксплуатации котельной №10 в режим насосной станции. Строительство новой блочно-модульной водогрейной газовой котельной мощностью 7 МВт (сценарий развития №1).

14.6. Удельная материальная характеристика тепловых сетей, приведенная к расчетной тепловой нагрузке

Удельная материальная характеристика тепловых сетей, приведенная к расчетной тепловой нагрузке приведена в Табл. 14.8.

Табл. 14.8. Удельная материальная характеристика тепловых сетей, приведенная к расчетной тепловой нагрузке

Nº ⊓/⊓	Наименование котельной	Ед. измерения	2022	2023	2024	2025 - 2029	2030 - 2034	
	Центральная котельная		652,72	745,67	751,03	-	-	
1	Новая блочно-модульная водогрейная газовая котельная	м2/(Гкал/ч)	-	ı	-	674,30	676,61	
2	Котельная №12	м2/(Гкал/ч)	1531,53	1531,53	1531,53	(*	")	
	Котельная №6		3421,06	_	_	1	_	
3	Новая блочно-модульная водогрейная газовая котельная мощностью 7 МВт	м2/(Гкал/ч)	_	1907,93	1953,37	2061,91	2020,05	
4	Котельная №10	м2/(Гкал/ч)	1818,62	(**)				

(**) – переключение тепловых нагрузок котельной №10 на котельную №6 (строительство тепловых сетей для объединения котельных). Вывод из эксплуатации угольных котельных №6 и №10 с переводом выведенной из эксплуатации котельной №10 в режим насосной станции. Строительство новой блочно-модульной водогрейной газовой котельной мощностью 7 МВт (сценарий развития №1).

14.7. Доля тепловой энергии, выработанной в комбинированном режиме (как отношение величины тепловой энергии, отпущенной из отборов турбоагрегатов, к общей величине выработанной тепловой энергии в границах поселения, городского округа, города федерального значения)

В муниципальном образовании «город Северобайкальск» отсутствуют источники тепловой энергии, работающие в режиме комбинированной выработки тепловой и электрической энергии реализуемой внешним потребителям.

14.8. Удельный расход условного топлива на отпуск электрической энергии

В муниципальном образовании «город Северобайкальск» отсутствуют источники тепловой энергии, работающие в режиме комбинированной выработки тепловой и электрической энергии реализуемой внешним потребителям.

14.9. Коэффициент использования теплоты топлива (только для источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии)

В муниципальном образовании «город Северобайкальск» отсутствуют источники тепловой энергии, работающие в режиме комбинированной выработки тепловой и электрической энергии реализуемой внешним потребителям.

14.10. Доля отпуска тепловой энергии, осуществляемого потребителям по приборам учета, в общем объеме отпущенной тепловой энергии

Доля отпуска тепловой энергии, осуществляемого потребителям по приборам учета, в общем объеме отпущенной тепловой энергии приведена в Табл. 14.9.

Табл. 14.9. Доля отпуска тепловой энергии, осуществляемого потребителям по приборам учета, в общем объеме отпущенной тепловой энергии

Nº ⊓/⊓	Наименование котельной	Ед. измерения	2022	2023	2024	2025 - 2029	2030 - 2034
	Центральная котельная		0,310	0,307	0,305	-	_
1	Новая блочно-модульная водогрейная газовая котельная	-	_	-	-	0,320	0,321
2	Котельная №12	-	0,146	0,146	0,146	(()
	Котельная №6		0,123	-	-	-	-
2	Новая блочно-модульная водогрейная газовая котельная мощностью 7 МВт	-	-	0,258	0,258	0,268	0,279
4	Котельная №10	-	0,275			(**)	

Примечание: (*) — переключение тепловых нагрузок котельной №12 на Центральную котельную (строительство магистрального трубопровода от тепловой сети Центральной котельной при консервации котельной №12). Вывод из эксплуатации угольных котельных (Центральной котельной и котельной №12) с переводом котельной №12 в режим ЦТП. Строительство новой блочно-модульной водогрейной газовой котельной (сценарий развития №1).

(**) – переключение тепловых нагрузок котельной №10 на котельную №6 (строительство тепловых сетей для объединения котельных). Вывод из эксплуатации угольных котельных №6 и №10 с переводом выведенной из эксплуатации котельной №10 в режим насосной станции. Строительство новой блочно-модульной водогрейной газовой котельной мощностью 7 МВт (сценарий развития №1).

14.11. Средневзвешенный (по материальной характеристике) срок эксплуатации тепловых сетей (для каждой системы теплоснабжения)

Средневзвешенный (по материальной характеристике) срок эксплуатации тепловых сетей приведен в Табл. 14.10.

Табл. 14.10. Средневзвешенный (по материальной характеристике) срок эксплуатации тепловых сетей

Nº п/п	Наименование котельной	Ед. измерения	2022	2023	2024	2025 - 2029	2030 - 2034
	Центральная котельная		34,11	34,72	35,33	1	_
1	Новая блочно-модульная водогрейная газовая котельная	-	-	-	ı	39,19	41,63
2	Котельная №12	-	35,19	36,75	38,31	(*)
	Котельная №6		35,02	_	1	1	_
3	Новая блочно-модульная водогрейная газовая котельная мощностью 7МВт	-	-	37,01	36,08	31,69	31,41
4	Котельная №10	-	36,26	(**)			

(**) – переключение тепловых нагрузок котельной №10 на котельную №6 (строительство тепловых сетей для объединения котельных). Вывод из эксплуатации угольных котельных №6 и №10 с переводом выведенной из эксплуатации котельной №10 в режим насосной станции. Строительство новой блочно-модульной водогрейной газовой котельной мощностью 7 МВт (сценарий развития №1).

14.12. Отношение материальной характеристики тепловых сетей, реконструированных за год, к общей материальной характеристике тепловых сетей (фактическое значение за отчетный период и прогноз изменения при реализации проектов, указанных в утвержденной схеме теплоснабжения) (для каждой системы теплоснабжения, а также для поселения, городского округа, города федерального значения)

Отношение материальной характеристики тепловых сетей, реконструированных за год, к общей материальной характеристике тепловых сетей приведено в Табл. 14.11.

Табл. 14.11. Отношение материальной характеристики тепловых сетей, реконструированных за год, к общей материальной характеристике тепловых сетей

№ п/п	Наименование котельной	Ед. измерения	2022	2023	2024	2025 - 2029	2030 - 2034
	Центральная котельная		0,002	0,003	0,003	-	-
1	Новая блочно-модульная водогрейная газовая котельная	-	-	1	-	0,012	0,024
2	Котельная №12	-	-	0,173	0,189	(*)	

	Котельная №6		0,033	-	-	-	-
3	Новая блочно-модульная водогрейная газовая котельная мощностью 7 МВт	-	-	0,003	0,005	0,012	0,057
4	Котельная №10	-	0,082	(**)			

(**) – переключение тепловых нагрузок котельной №10 на котельную №6 (строительство тепловых сетей для объединения котельных). Вывод из эксплуатации угольных котельных №6 и №10 с переводом выведенной из эксплуатации котельной №10 в режим насосной станции. Строительство новой блочно-модульной водогрейной газовой котельной мощностью 7 МВт (сценарий развития №1).

14.13. Отношение установленной тепловой мощности оборудования источников тепловой энергии, реконструированного за год, к общей установленной тепловой мощности источников тепловой энергии (фактическое значение за отчетный период и прогноз изменения при утвержденной реализации проектов, указанных схеме В теплоснабжения) (для поселения, городского округа, города федерального значения)

Отношение установленной тепловой мощности оборудования источников тепловой энергии, реконструированного за год, к общей установленной тепловой мощности источников тепловой энергии приведено в Табл. 14.12.

Табл. 14.12. Отношение установленной тепловой мощности оборудования источников тепловой энергии, реконструированного за год, к общей установленной тепловой мощности источников тепловой энергии

№ п/п	Наименование котельной	Ед. измерения	2022	2023	2024	2025 - 2029	2030 - 2034	
	Центральная котельная		-	1	1	1	-	
1	Новая блочно-модульная водогрейная газовая котельная	-	_	ı	1,000	-	-	
2	Котельная №12	-	-	-	-	(*)		
	Котельная №6		-	-	1	-	-	
3	Новая блочно-модульная водогрейная газовая котельная мощностью 7 МВт	-	1,000	ı	ı	ı	-	
4	Котельная №10	-	-	(**)				

(**) – переключение тепловых нагрузок котельной №10 на котельную №6 (строительство тепловых сетей для объединения котельных). Вывод из эксплуатации угольных котельных №6 и №10 с переводом выведенной из эксплуатации котельной №10 в режим насосной станции. Строительство новой блочно-модульной водогрейной газовой котельной мощностью 7МВт (сценарий развития №1).

15. РАЗДЕЛ 15. ЦЕНОВЫЕ (ТАРИФНЫЕ) ПОСЛЕДСТВИЯ

15.1. Тарифно-балансовые расчетные модели теплоснабжения потребителей по каждой системе теплоснабжения

Тарифы для теплоснабжающей организации утверждены непосредственно на эксплуатацию источника тепловой энергии и тепловые сети. Изменение тарифа для потребителей тепловой энергии происходит с учетом предельного индекса на изменения размера платы за коммунальные услуги.

Тарифы на тепловую энергию (мощность), поставляемую теплоснабжающей организацией потребителям муниципального образования «город Северобайкальск» не предоставлены в связи со снятием статуса единой теплоснабжающей организации с АО «Теплоэнерго» с 05 мая 2022 г. (постановление администрации муниципального образования «город Северобайкальск» от 05 мая 2022 г. № 402).

Тарифно-балансовую расчетную модель теплоснабжения при переходе на сжиженный природный газ (СПГ) для потребителей тепловой энергии на данном этапе актуализации отобразить не представляется возможным, поскольку не известна окончательная величина инвестиций для реализации проекта.

При последующей актуализации необходимо отразить мероприятия, реализованные при переходе на СПГ.

15.2. Тарифно-балансовые расчетные модели теплоснабжения потребителей по каждой единой теплоснабжающей организации

Тарифно-балансовые расчетные модели теплоснабжения потребителей по ЕТО будут совпадать с моделями по потребителям систем теплоснабжения.

15.3. Результаты оценки ценовых (тарифных) последствий реализации проектов схемы теплоснабжения, на основании разработанных тарифно-балансовых моделей

Динамика изменения тарифа на тепловую энергию для теплоснабжающей организации не предоставляется в связи со снятием статуса единой теплоснабжающей организации с АО «Теплоэнерго» с 05 мая 2022 г. (постановление администрации муниципального образования «город Северобайкальск» от 05 мая 2022 г. № 402).

Динамику роста тарифа на тепловую энергию при переходе на сжиженный природный газ разработать на данном этапе актуализации не представляется возможным, поскольку не известна окончательная величина инвестиций для реализации проекта.

- 16. РАЗДЕЛ 16. ОБЕСПЕЧЕНИЕ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ ТЕПЛОСНАБЖЕНИЯ ПОСЕЛЕНИЯ, ГОРОДСКГО ОКРУГА, ГОРОДА ФЕДЕРАЛЬНОГО ЗНАЧЕНИЯ
- 16.1. Описание текущего и перспективного объема (массы) выбросов загрязняющих веществ в атмосферный воздух, сбросов загрязняющих веществ на водосборные площади, в поверхностные и подземные водные объекты, размещения отходов производства, образующихся на стационарных объектах производства тепловой энергии (мощности), в том числе функционирующих в режиме комбинированной выработки электрической и тепловой энергии, размещенных на территории поселения, городского округа, города федерального значения (далее объекты теплоснабжения)

При сжигании органического топлива в топках коммунальных котлоагрегатов и теплогенераторов производится тепловая энергия (водяной пар или горячая вода на отопление или горячее водоснабжение). Дымовые газы, попадающие при этом в воздушный бассейн, несут с собой большое число твердых и газообразных загрязнителей, среди которых такие вредные вещества как зола, оксиды углерода, серы и азота. Помимо этого, в воздушный бассейн попадает огромное количество диоксида углерода и водяных паров.

Газообразное топливо представляет собой наиболее «чистое» органическое топливо, так как при его полном сгорании из токсичных веществ образуются только оксиды азота. При неполном сгорании в выбросах присутствует оксид углерода (CO).

Диоксид углерода и пары воды - основные по массе отходы производства - поступают в атмосферу, включаются в природные циклы и поглощаются растительностью в процессе синтеза органических соединений и регенерации кислорода. В этом качестве эти отходы нельзя признать вредными.

Однако масштабы использования органического топлива и соответственно выброса диоксида углерода по некоторым оценкам превышают регенерационные возможности растительного мира. В результате в атмосфере наблюдается возрастание удельного веса диоксида углерода (углекислого газа) СО₂. Влияние СО₂ выражается не только в токсическом действии на живые организмы, но и в способности поглощать инфракрасные лучи.

Выбросы загрязняющих веществ зависят как от количества и вида топлива, так и от типа котлоагрегата.

Валовый выброс твердых частиц в дымовых газах, т/год

$$M_T = A^P \cdot B \cdot \chi \cdot \left(1 - \frac{\eta_T}{100}\right)$$

где АР - зольность топлива, в %;

В - количество израсходованного топлива, т/год, (тыс. м³/год);

χ - безразмерный коэффициент, характеризующий долю уносимой с дымовыми газами летучей золы, зависит от типа топки и топлива;

 η_{τ} - эффективность золоуловителей, %.

Валовый выброс мазутной золы в пересчете на ванадий, т/год

$$M_V = 10^{-6} \cdot q_V \cdot B \cdot (1 - \eta_{OC}) \cdot (1 - \eta_V)$$

где q_V - содержание оксидов ванадия в мазуте, зависит от зольности топлива, г/т;

$$q_V = \frac{4000 \cdot A^P}{1,8}$$

В - количество израсходованного топлива, т/год, (тыс. м³/год);

 η_{OC} - коэффициент оседания оксидов ванадия на поверхностях нагрева внутри котлоагрегатов (для котлов мощностью менее 30 т/ч равен 0);

 $\eta_{\text{У}}$ - коэффициент улавливания оксидов ванадия, зависит от эффективности золоуловителя.

Валовый выброс оксида углерода, т/год

$$M_{CO} = 0,001 \cdot C_{CO} \cdot B \cdot \left(1 - \frac{q_4}{100}\right)$$

где q4- потери теплоты вследствие механической неполноты сгорания, %;

В - количество израсходованного топлива, т/год, (тыс. м³/год);

 C_{CO} - выход оксида углерода при сжигании топлива, кг/т, (кг/тыс. м³);

$$C_{CO} = q_3 \cdot R \cdot Q_H^P$$

где q₃ - потери теплоты вследствие химической неполноты сгорания топлива, %;

R - коэффициент, учитывающий долю потери теплоты вследствие химической неполноты сгорания топлива, обусловленный наличием в продуктах сгорания оксида углерода, (R = 1 - для твердого топлива, R = 0,5 - для газа, R = 0,65 - для мазута);

QР_Н - низшая теплота сгорания натурального топлива, МДж/кг, МДж/м³.

Валовый выброс оксидов азота в пересчете на диоксид азота, т/год

$$M_{\scriptscriptstyle NO_2} = 0,001 \cdot Q_{\scriptscriptstyle H}^{\scriptscriptstyle P} \cdot B \cdot K_{\scriptscriptstyle NO_2} \cdot \left(1 - \beta\right)$$

где K_{NO2} - параметр, характеризующий количество оксидов азота, образующихся на один ГДж тепла, кг/ГДж;

 β - коэффициент, зависящий от степени снижения выбросов оксидов азота в результате применения технических решений. Для котлов производительностью до 30 т/час β = 0.

Валовый выброс оксидов серы в пересчете на диоксид серы, т/год (определяется только для твердого и жидкого топлива)

$$M_{SO_2} = 0.02 \cdot S^P \cdot B \cdot (1 - \eta_{SO_2}) \cdot (1 - \eta_{SO_2})$$

где S - содержание серы в топливе, %, табл. 1.;

 η'_{SO2} - доля оксидов серы, связываемых летучей золой топлива.

Для эстонских и ленинградских сланцев принимается равной 0,8; остальных сланцев - 0,5. Для углей Канско-Ачинского бассейна - 0,2 (Березовских - 0,5); экибастузских - 0,02; прочих углей - 0,1. Для торфа - 0,15; мазута - 0,02; газа - 0.

 η "_{SO2} - доля оксидов серы, улавливаемых в золоуловителе. Для сухих золоуловителей принимается равной 0.

Расчет предельно-допустимых выбросов загрязняющих веществ (ПДВ) проводится для случая максимального расхода топлива. В общем случае максимальный расход топлива (г/с, л/с) определяется по формуле:

$$B' = \frac{\Pi \cdot 10^6}{Q_H^P \cdot K\Pi \cancel{I} \cdot 3,6}$$

где П – суммарная теплопроизводительность котлов, Гкал/час,

QР_Н – низшая теплота сгорания топлива, ккал/кг, ккал/м³,

КПД – коэффициент полезного действия котлоагрегата.

Для установок, где максимальный расход топлива значительно превышает значение среднегодового расхода (например, для отопительных котельных) за В' принимается расход топлива в самый напряженный месяц (например, январь для отопительных котлов).

Тогда максимально разовый выброс (г/с) определяется по следующим формулам.

Максимально разовый выброс твердых частиц в дымовых газах, г/с

$$G_T = A^P \cdot B' \cdot \chi \cdot \left(1 - \frac{\eta_T}{100}\right)$$

Максимально разовый выброс мазутной золы в пересчете на ванадий, г/с

$$G_V = 10^{-6} \cdot q_V \cdot B' \cdot (1 - \eta_{OC}) \cdot (1 - \eta_V)$$

Максимально разовый выброс оксида углерода, г/с

$$G_{CO} = 0.001 \cdot C_{CO} \cdot B' \cdot \left(1 - \frac{q_4}{100}\right)$$

Максимально разовый выброс оксида азота, г/с

$$G_{NO_2} = 0.001 \cdot Q_H^P \cdot B' \cdot K_{NO_2} \cdot (1 - \beta)$$

Максимально разовый выброс оксида серы, г/с

$$G_{SO_2} = 0.02 \cdot S^P \cdot B' \cdot (1 - \eta'_{SO_2}) \cdot (1 - \eta'_{SO_2})$$

Результаты расчетов валового выброса загрязняющих веществ по каждому источнику тепловой энергии представлен в таблице ниже.

Табл. 16.1. Текущие и перспективные валовые выбросы загрязняющих веществ от источников тепловой энергии

№ п/п	Наименование источника	Валовый выброс, т/год	2022	2023	2024	2025-2029	2030-2034
		Твердые частицы	507,246	0,000	0,000	0,000	0,000
		Оксиды серы	310,559	0,000	0,000	0,000	0,000
1	Центральная котельная (*)	Оксиды углерода	993,227	299,405	320,147	1608,450	1604,293
		Оксиды азота	330,494	137,015	146,507	736,066	734,164
		Мазутной золы	-	0,000	0,000	0,000	0,000
		Твердые частицы	0,000	0,000	0,000	0,000	0,000
		Оксиды серы	0,000	0,000	0,000	0,000	0,000
2	Котельная №10 (**)	Оксиды углерода	30,413	30,413	30,413	149,982	144,887
		Оксиды азота	11,305	11,305	11,305	55,753	53,859
		Мазутной золы	0,000	0,000	0,000	0,000	0,000
		Твердые частицы	43,257	43,063	0,000	0,000	0,000
		Оксиды серы	26,484	26,365	0,000	0,000	0,000
3	Котельная №12 (*)	Оксиды углерода	84,701	84,321	0,000	0,000	0,000
		Оксиды азота	24,359	24,250	0,000	0,000	0,000
		Мазутной золы	-	-	0,000	0,000	0,000
		Твердые частицы	0,000	0,000	0,000	0,000	0,000
		Оксиды серы	0,000	0,000	0,000	0,000	0,000
4	Котельная №6 (**)	Оксиды углерода	0,000	0,000	0,000	0,000	0,000
		Оксиды азота	0,000	0,000	0,000	0,000	0,000
		Мазутной золы	0,000	0,000	0,000	0,000	0,000

^{(**) –} переключение тепловых нагрузок котельной №10 на котельную №6 (строительство тепловых сетей для объединения котельных). Вывод из эксплуатации угольных котельных №6 и №10 с переводом выведенной из эксплуатации котельной №10 в режим насосной станции. Строительство новой блочно-модульной водогрейной газовой котельной мощностью 7 МВт (сценарий развития №1).

16.2. Описание текущих и перспективных значений средних за год концентраций вредных (загрязняющих) веществ в приземном слое атмосферного воздуха от выбросов объектов теплоснабжения

Для расчета поля долгопериодных средних концентраций от одиночного точечного источника выброса значения осредненной мощности М выброса загрязняющих веществ (далее 3B), осредненной скорости w_O выхода газовоздушной смеси (далее ГВС) из устья источника и ее вертикальной составляющей w_S, объемного расхода V₁ ГВС и осредненного перегрева ГВС относительно окружающего атмосферного воздуха ΔT определяются в соответствии с методиками расчета выбросов вредных (загрязняющих) веществ в атмосферный воздух стационарными источниками. В случае отсутствия необходимых сведений, практические расчеты по формулам, приведенным ниже, в соответствующих отраслях не производятся.

Для источников выбросов с постоянными в течение рассматриваемого периода времени параметрами выброса долгопериодные средние приземные концентрации С ЗВ определяются по формуле

$$C(r_{P}, \varphi_{P}) = \frac{p_{1}(\varphi) \cdot M}{r_{P}} \cdot C'(r_{P}, \varphi_{P})$$

где $^{r_{\scriptscriptstyle P}}$ и $^{arphi_{\scriptscriptstyle P}}$ – полярные координаты расчетной точки относительно источника выброса;

 $p_{1}(arphi)$ – функция, характеризующая угловое распределение концентрации ЗВ, которая выражается через розу ветров для рассматриваемого периода времени.

Функция $C'(r_{\!\scriptscriptstyle P}, \varphi_{\!\scriptscriptstyle P})$ вычисляется по формуле:

$$C'(r_{P}, \varphi_{P}) = \int_{0}^{\infty} du \int_{0}^{\infty} p_{2}(u) \cdot p_{3}(\lambda) \cdot q_{i}(r_{P}, u, \varphi_{P}, \lambda, H_{E}) d\lambda$$

где u – скорость ветра на уровне флюгера $(z_{\phi} = 10 \, \text{м})$, м/с;

характеризующий условия турбулентного ∠ – безразмерный параметр, перемешивания, рассчитываемый по формуле:

$$\lambda = \frac{K_1}{z_1 \cdot u_1}$$

 K_1 – коэффициент вертикального турбулентного обмена на уровне $(z_1=1_M)$, м²/с; u_1 – скорость ветра на уровне $(z_1=1_M)$, м/с;

 $p_{2}(u)$ и $p_{3}(\lambda)$ – соответствующие рассматриваемому периоду времени плотности вероятностей параметров u и λ ;

 $q_i\left(r_{\!\scriptscriptstyle P},u,\phi_{\!\scriptscriptstyle P},\lambda,H_{\scriptscriptstyle E}
ight)$ – подынтегральная функция, формулы для определения которой с учетом влияния рельефа местности и застройки;

 $H_{\scriptscriptstyle E}$ – эффективная высота источника выброса.

вычислении математического ожидания и максимальных значений долгопериодных средних концентраций ЗВ используются климатические данные (в случае их наличия) или выборочные оценки указанных функций, полученные для рассматриваемого периода времени по ряду наблюдений продолжительностью не менее пяти лет.

Для приближенных оценок функций $p_1(\varphi)$, $p_2(u)$ и $p_3(\lambda)$ допускается использование данных наблюдений продолжительностью не менее трех лет.

В связи с отсутствием необходимых для расчета долгопериодных средних концентраций функции распределения метеорологических параметров $p_1(\varphi)$, $p_2(u)$ и $p_3(\lambda)$, а также информация о прочих характеристиках режима определяющих среднегодовые концентрации метеопараметров, то допускается проводить упрощенный расчет среднегодовых концентраций ЗВ от одиночного точечного источника выброса по формуле:

$$C = 0.1 \cdot c \cdot P / P_0$$

где С и с – соответственно, среднегодовая и максимальная разовая (вычисленная с учетом фона) концентрация от одиночного точечного источника выброса в рассматриваемой расчетной точке, Р (%) – среднегодовая повторяемость ветров румба, соответствующего переносу ЗВ от источника выброса в расчетную точку, P_0 (%) – повторяемость направлений ветров одного румба при круговой розе ветров (для восьмирумбовой розы ветров $P_0=12,5\%$). При выполнении условия $P \prec P_0$ в формуле для соответствующего румба принимается $P=P_0$.

Расчетные величины по среднегодовой концентрации представлены в таблице ниже.

Табл. 16.2. Среднегодовая концентрация загрязняющих веществ по румбам от каждого источника тепловой энергии

Nº -/-	Наименование	Среднегодовая приземная	С	СВ	В	ЮВ	Ю	Ю3	3	C3
п/п	источника	/ -		5	5,5	9,5	33	6	3,5	12,5
		Твердые частицы	0,079991	0,038842	0,038842	0,038842	0,101527	0,038842	0,038842	0,038842
		Оксиды серы	0,020104	0,009762	0,009762	0,009762	0,025517	0,009762	0,009762	0,009762
1	Центральная (*)	Оксиды углерода	0,05226	0,02537	0,02537	0,02537	0,06633	0,02537	0,02537	0,02537
	котельная ()	Оксиды азота	0,03288	0,01597	0,01597	0,01597	0,04174	0,01597	0,01597	0,01597
		Мазутной золы	-	-	•	-	ı	-	ı	-
		Твердые частицы	0,07606	0,03694	0,03694	0,03694	0,09654	0,03694	0,03694	0,03694
	Котельная №10 (**)	Оксиды серы	0,01790	0,00869	0,00869	0,00869	0,02272	0,00869	0,00869	0,00869
2		Оксиды углерода	0,11661	0,05662	0,05662	0,05662	0,14801	0,05662	0,05662	0,05662
		Оксиды азота	0,02777	0,01348	0,01348	0,01348	0,03524	0,01348	0,01348	0,01348
		Мазутной золы	-	-	•	-	1	-	ı	-
		Твердые частицы	0,08210	0,03987	0,03987	0,03987	0,10420	0,03987	0,03987	0,03987
	Котолицов	Оксиды серы	0,02140	0,01039	0,01039	0,01039	0,02716	0,01039	0,01039	0,01039
3	Котельная №12 (*)	Оксиды углерода	0,05639	0,02738	0,02738	0,02738	0,07157	0,02738	0,02738	0,02738
	14212 ()	Оксиды азота	0,03173	0,01541	0,01541	0,01541	0,04027	0,01541	0,01541	0,01541
		Мазутной золы	-	-	-	-	-	-	-	-
		Твердые частицы	0,07619	0,03700	0,03700	0,03700	0,09670	0,03700	0,03700	0,03700
		Оксиды серы	0,01798	0,00873	0,00873	0,00873	0,02282	0,00873	0,00873	0,00873
4	Котельная №6 /**)	Оксиды углерода	0,11725	0,05694	0,05694	0,05694	0,14882	0,05694	0,05694	0,05694
	_	Оксиды азота	0,02737	0,01329	0,01329	0,01329	0,03473	0,01329	0,01329	0,01329
		Мазутной золы	-	-	-	-	-	-	-	-

(**) – переключение тепловых нагрузок котельной №10 на котельную №6 (строительство тепловых сетей для объединения котельных). Вывод из эксплуатации угольных котельных №6 и №10 с переводом выведенной из эксплуатации котельной №10 в режим насосной станции. Строительство новой блочно-модульной водогрейной газовой котельной мощностью 7 МВт (сценарий развития №1).

16.3. Описание текущих и перспективных значений максимальных разовых концентраций вредных (загрязняющих) веществ в приземном слое атмосферного воздуха от выбросов объектов теплоснабжения

Максимальная приземная разовая концентрация ЗВ C_M , ${}^{M\mathcal{Z}/M^3}$, при выбросе ГВС из одиночного точечного источника с круглым устьем достигается при опасной скорости ветра U_M на расстоянии X_M от источника выброса и определяется по формуле:

$$c_{M} = \frac{A \cdot M \cdot F \cdot m \cdot n \cdot \eta}{H^{2} \cdot \sqrt[3]{V_{1} \cdot \Delta T}}$$

где A – коэффициент, зависящий от температурной стратификации атмосферы, определяющий условия горизонтального и вертикального рассеивания 3B в атмосферном воздухе;

М – масса ЗВ, выбрасываемого в атмосферный воздух в единицу времени (мощность выброса), г/с;

F – безразмерный коэффициент, учитывающий скорость оседания ЗВ (газообразных и аэрозолей, включая твердые частицы) в атмосферном воздухе;

m и n – безразмерные коэффициенты, учитывающие условия выброса из устья источника выброса;

 η – безразмерный коэффициент, учитывающий влияние рельефа местности;

Н – высота источника выброса, м;

 V_1 – расход газовоздушной смеси, м 3 /с;

 ΔT — разность между температурой выбрасываемой ГВС T_T и температурой атмосферного воздуха T_B , °C.

$$V_1 = \frac{\pi \cdot D^2}{4} \cdot w_O$$

где D – диаметр устья источника выброса, м;

 $^{W_{O}}\,$ – средняя скорость выхода ГВС из устья источника выброса, м/с.

Значения коэффициента А, соответствующего неблагоприятным метеорологическим условиям, при которых разовые концентрации ЗВ в атмосферном воздухе достигают максимальных значений.

Мощности М выброса, высоты источников H, диаметры устьев D, температуры T_T и расходы V_1 ГВС при проектировании предприятий должны определяться расчетом в технологической части проекта (для проектируемых, вводимых в эксплуатацию построенных и реконструированных объектов), а для действующих производств должны определяться по результатам инвентаризации стационарных источников выбросов вредных (загрязняющих) веществ в атмосферный воздух.

При определении величины ΔT для предприятий, работающих по сезонному графику, допускается принимать значения расчетной температуры окружающего атмосферного воздуха T_B равными средним месячным температурам воздуха за самый холодный месяц

по СП 131.13330.2012 Свод правил. «Актуализированная редакция СНиП 23-01-99 Строительная климатология».

Для остальных источников выбросов расчетная температура $^{T_{\scriptscriptstyle B}}$ принимается равной средней максимальной температуре воздуха наиболее теплого месяца года по СП 131.13330.2012 Свод правил. «Актуализированная редакция СНиП 23-01-99 Строительная климатология».

Значение безразмерного коэффициента F является табличной величиной.

Коэффициенты m и n определяются в зависимости от характеризующих свойства источника выброса параметров $v_{\scriptscriptstyle M}$, $v_{\scriptscriptstyle M}^{\scriptscriptstyle P}$, f и $f_{\scriptscriptstyle E}$:

$$v_{M} = 0.65 \cdot \sqrt[3]{\frac{V_{1} \cdot \Delta T}{H}}$$

$$v_{M}^{P} = 1.3 \cdot \frac{w_{O} \cdot D}{H}$$

$$f = 1000 \cdot \frac{w_{O}^{2} \cdot D}{H^{2} \cdot \Delta T}$$

$$f_{E} = 800 \cdot \left(v_{M}^{P}\right)^{3}$$

Коэффициент m определяется по формулам:

$$m = \frac{1}{0,67 + 0,1 \cdot \sqrt{f} + 0,34 \cdot \sqrt[3]{f}}$$
 при $f < 100$ $m = \frac{1,47}{\sqrt[3]{f}}$ при $f \ge 100$.

Для $f_E \prec f \prec 100$ коэффициент m вычисляется при $f = f_E$ Коэффициент n при $f \prec 100$ определяется по формулам:

$$n=4, 4 \cdot v_M$$
 при $v_M < 0, 5$, $n=0, 532 \cdot v_M^2 - 2, 13 \cdot v_M + 3, 13$ при $0, 5 < v_M < 2$, $n=1$ при $v_M \ge 2$.

При $f \ge 100$ или $0 \le \Delta T < 0.5$ коэффициент n вычисляется при $v_{\scriptscriptstyle M} = v_{\scriptscriptstyle M}^{\scriptscriptstyle P}$.

Расстояние $^{\mathcal{X}_{M}}$ от источника выброса, на котором приземная концентрация с 3В при неблагоприятных метеорологических условиях достигает максимального значения $^{\mathcal{C}_{M}}$ определяется по формуле:

$$x_{M} = \frac{5 - F}{4} \cdot d \cdot H$$

Безразмерный коэффициент d при f < 100 находится по формулам:

$$d = 2,48 \cdot \left(1 + 0,28 \cdot \sqrt[3]{f_E}\right) \text{ при } v_M \le 0,5 \ ,$$

$$d = 4,95 \cdot v_M \cdot \left(1 + 0,28 \cdot \sqrt[3]{f}\right) \text{ при } 0,5 \prec v_M \le 2 \ ,$$

$$d = 7 \cdot \sqrt{v_{_{M}}} \cdot \left(1 + 0, 28 \cdot \sqrt[3]{f}\right) \text{ при } v_{_{M}} \succ 2 \ .$$
 При $f \ge 100$ или $0 \le \Delta T \prec 0, 5$ коэффициент d находится по формулам:
$$d = 5, 7 \text{ при } v_{_{M}} \le 0, 5 \ ,$$

$$d = 11, 4 \cdot v_{_{M}}^{P} \text{ при } 0, 5 \prec v_{_{M}}^{P} \le 2 \ ,$$

$$d = 16 \cdot \sqrt{v_{_{M}}^{P}} \text{ при } v_{_{M}}^{P} \succ 2 \ .$$

Опасная скорость ветра u_M на стандартном уровне флюгера (10 м от уровня земли), при которой достигается наибольшая приземная концентрация ЗВ c_M , в случае $^{f \, < \, 100}$ определяется по формулам:

$$\begin{split} u_{\scriptscriptstyle M} &= 0,5 \text{ }_{\text{ ПРИ}} \ v_{\scriptscriptstyle M} \leq 0,5 \text{ }, \\ u_{\scriptscriptstyle M} &= v_{\scriptscriptstyle M} \text{ }_{\text{ПРИ}} \ 0,5 \prec v_{\scriptscriptstyle M} \leq 2 \text{ }, \\ u_{\scriptscriptstyle M} &= v_{\scriptscriptstyle M} \cdot \left(1 + 0,12 \cdot \sqrt{f} \right) \text{ }_{\text{ ПРИ}} \ v_{\scriptscriptstyle M} \succ 2 \text{ }. \end{split}$$

При $f \ge 100\,$ или $0 \le \Delta T < 0,5\,$ коэффициент $u_{\scriptscriptstyle M}\,$ находится по формулам:

$$u_{\scriptscriptstyle M} = 0,5$$
 при $v_{\scriptscriptstyle M} \le 0,5$,

$$u_{\scriptscriptstyle M} = v_{\scriptscriptstyle M}^{\scriptscriptstyle P}$$
 при $0,5 \prec v_{\scriptscriptstyle M}^{\scriptscriptstyle P} \leq 2$,

$$u_M = 2, 2 \cdot v_M^P$$
 при $v_M^P \succ 2$.

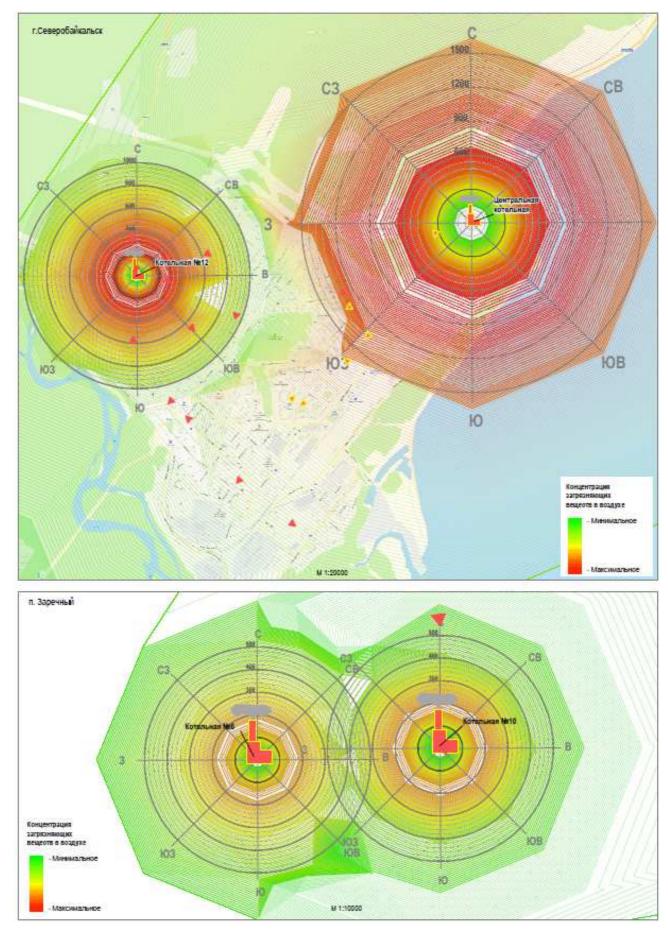


Рис. 16.1. Схема концентрации загрязняющих веществ в районе котельных муниципального образования «город Северобайкальск».

Табл. 16.3. Текущие и перспективные максимальные разовые выбросы загрязняющих веществ от каждого источника тепловой энергии

№ п/п	Наименование источника	Максимально разовый выброс, г/с	2022	2023	2024	2025-2029	2030-2034
		Твердые частицы	33,9212	-	-	-	-
		Оксиды серы	20,7681	-	-	-	-
1	Центральная котельная (*)	Оксиды углерода	66,42030	37,69664	40,30826	40,51027	202,51246
		Оксиды азота	22,10121	17,25091	18,44605	18,53849	92,67469
		Мазутной золы	-	-	ı	-	-
		Твердые частицы	1,14561	-	-	-	-
		Оксиды серы	0,71156	-	-	-	-
2	Котельная №10 (**)	Оксиды углерода	5,90799	3,63495	3,63495	3,63495	17,92606
		Оксиды азота	0,61633	1,35122	1,35122	1,35122	6,66363
		Мазутной золы	-	-	•	-	-
	Котельная №12 (*)	Твердые частицы	3,39423	-	•	-	-
		Оксиды серы		-	•	-	-
3		Оксиды углерода	6,64617	0,00064	0,00064	0,00064	0,00320
		Оксиды азота	1,91134	0,00025	0,00025	0,00025	0,00126
		Мазутной золы	-	-	•	-	-
		Твердые частицы	0,00204	-	•	-	-
	Котельная №6 (**)	Оксиды серы	0,00127	-	•	-	-
4		Оксиды углерода	0,01052	0,00073	0,00073	0,00073	0,00366
		Оксиды азота		0,00026	0,00026	0,00026	0,00131
		Мазутной золы	-	-	-	-	-

(**) – переключение тепловых нагрузок котельной №10 на котельную №6 (строительство тепловых сетей для объединения котельных). Вывод из эксплуатации угольных котельных №6 и №10 с переводом выведенной из эксплуатации котельной №10 в режим насосной станции. Строительство новой блочно-модульной водогрейной газовой котельной мощностью 7 МВт (сценарий развития №1).

16.4. Оценка снижения объема (массы) выбросов вредных (загрязняющих) веществ в атмосферный воздух и размещения отходов производства за счет перераспределения тепловой нагрузки от котельных на источники с комбинированной выработкой электрической и тепловой энергии

В актуализированной схеме теплоснабжения источники с комбинированной выработкой электрической и тепловой энергии отсутствуют. Таким образом, перераспределение тепловой нагрузки между источниками теряет смысл, как и необходимость оценки снижения объема выброса вредных (загрязняющих) веществ в атмосферу.

16.5. Предложения по снижению объема (массы) выбросов вредных (загрязняющих) веществ в атмосферный воздух, сбросов вредных (загрязняющих) веществ на водосборные площади, в поверхностные и подземные водные объекты, и минимизации воздействий на окружающую среду от размещения отходов производства

В таблицу ниже сведены результаты расчета годового валового выброса загрязняющих веществ, при использовании существующего топлива (уголь) и на перспективного топлива (природный газ).

Табл. 16.4. Сравнение валового выброса загрязняющих веществ при переходе источников тепловой энергии на более экологически чистое топливо

	Наименование источника	Существующее положение						Возможная перспектива					
№ п/п		Топливо	Валовый выброс твердых частиц в дымовых газах, т/год МТВ	Валовый выброс оксидов серы в летучей золе, т/год MSO2	Валовый выброс оксидов углерода в летучей золе, т/год MCO	Валовый выброс оксидов азота в дымовых газах, т/год MNO2	Валовый выброс мазутной золы в перерасчете на ванадий, т/год MV	Топливо	Валовый выброс твердых частиц в дымовых газах, т/год МТВ	Валовый выброс оксидов серы в летучей золе, т/год MSO2	Валовый выброс оксидов углерода в летучей золе, т/год MCO	Валовый выброс оксидов азота в дымовых газах, т/год MNO2	Валовый выброс мазутной золы в перерасчете на ванадий, т/год MV
1	Центральная котельная	Переясловское (Б3)	501,782	307,214	982,528	326,934	-	СПГ		-	299,405	137,015	-
2	Котельная №10	Переясловское (Б3)	25,701	15,963	132,540	13,827	-	СПГ		-	21,031	7,818	-
3	Котельная №12	Переясловское (Б3)	43,646	26,722	85,462	24,578	-	(*)					
4	Котельная №6	Переясловское (Б3)	15,678	9,738	80,851	8,110	-	(**)					

Примечание: (*) – переключение тепловых нагрузок котельной №12 на Центральную котельную (строительство магистрального трубопровода от тепловой сети Центральной котельной при консервации котельной №12). Вывод из эксплуатации угольных котельных (Центральной котельной и котельной №12) с переводом котельной №12 в режим ЦТП. Строительство новой блочномодульной водогрейной газовой котельной (сценарий развития №1).

- (**) переключение тепловых нагрузок котельной №10 на котельную №6 (строительство тепловых сетей для объединения котельных). Вывод из эксплуатации угольных котельных №6 и №10 с переводом выведенной из эксплуатации котельной №10 в режим насосной станции. Строительство новой блочно-модульной водогрейной газовой котельной мощностью 7 МВт (сценарий развития №1)
- (***) газообразного топлива оказывает минимальное воздействие выбросами дымовых газов на окружающую среду.

16.6. Предложения по величине необходимых инвестиций для снижения выбросов вредных (загрязняющих) веществ в атмосферный воздух, сброса вредных (загрязняющих) веществ на водосборные площади, в поверхностные и подземные водные объекты, минимизации воздействий на окружающую среду от размещения отходов производства

Выполнение собственными силами или привлечение специализированной сторонней организации для выполнения режимно-наладочных испытаний котлов в соответствии с требованиями п.5.3.7 «Правил технической эксплуатации тепловых энергоустановок».

В перспективе сжигание газообразного топлива окажет минимальное воздействие выбросов дымовых газов на окружающую среду, поэтому дополнительные инвестиции для снижения выбросов вредных веществ в дальнейшем не потребуются.

17. РАЗДЕЛ 17. СВЕДЕНИЯ О МЕРОПРИЯТИЯХ ПО ОБЕСПЕЧЕНИЮ НАДЕЖНОСТИ ТЕПЛОСНАБЖЕНИЯ И БЕСПЕРЕБОЙНОЙ РАБОТЫ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ, ВЫЯВЛЕНИЕ ПОТЕНЦИАЛЬНЫХ УГРОЗ ДЛЯ ИХ РАБОТЫ, ОЦЕНКА ПОТРЕБНОСТИ В ИНВЕСТИЦИЯХ, НЕОБХОДИМЫХ ДЛЯ УСТРАНЕНИЯ ДАННЫХ УГРОЗ

Сведения о мероприятиях по обеспечению надежности теплоснабжения и бесперебойной работы систем теплоснабжения, выявление потенциальных угроз для их работы, оценка потребности в инвестициях, необходимых для устранения данных угроз представлены в Главе 18 «Сведения о мероприятиях по обеспечению надежности теплоснабжения и бесперебойной работы систем теплоснабжения, выявление потенциальных угроз для их работы, оценка потребности в инвестициях, необходимых для устранения данных угроз» обосновывающих материалов к схеме теплоснабжения муниципального образования «город Северобайкальск».

РАЗВИТИЯ АВАРИЙ 18. РАЗДЕЛ 18. СЦЕНАРИИ В CUCTEMAX МОДЕЛИРОВАНИЕМ ГИДРАВЛИЧЕСКИХ ТЕПЛОСНАБЖЕНИЯ C РЕЖИМОВ РАБОТЫ ТАКИХ СИСТЕМ, В ТОМ ЧИСЛЕ ПРИ ОТКАЗЕ ЭЛЕМЕНТОВ ТЕПЛОВЫХ СЕТЕЙ И ПРИ АВАРИЙНЫХ РЕЖИМАХ CUCTEM ТЕПЛОСНАБЖЕНИЯ. РАБОТЫ СВЯЗАННЫХ ПРЕКРАЩЕНИЕМ ПОДАЧИ ТЕПЛОВОЙ ЭНЕРГИИ

Информация по сценариям развития аварий в системах теплоснабжения с моделированием гидравлических режимов работы таких систем, в том числе при отказе элементов тепловых сетей и при аварийных режимах работы систем теплоснабжения, связанных с прекращением подачи тепловой энергии представлена в Главе 19 «Сценарии развития аварий в системах теплоснабжения с моделированием гидравлических режимов работы таких систем, в том числе при отказе элементов тепловых сетей и при аварийных режимах работы систем теплоснабжения, связанных с прекращением подачи тепловой энергии» обосновывающих материалов к схеме теплоснабжения муниципального образования «город Северобайкальск».